初一上册数学教案-1_第1页
初一上册数学教案-1_第2页
初一上册数学教案-1_第3页
初一上册数学教案-1_第4页
初一上册数学教案-1_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初一上册数学教案作为一位优秀的人民教师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。我们应该怎么写教案呢?下面是小编整理的初一上册数学教案,欢迎大家分享。初一上册数学教案1【教学目标】知识与技能了解并掌握数据收集的基本方法。过程与方法在调查的过程中,要有认真的态度,积极参与。情感、态度与价值观体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。【教学重难点】重点:掌握统计调查的基本方法。难点:能根据实际情况合理地选择调查方法。【教学过程】一、讲授新课像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查(samplingsurvey),即从被考察的全体对象中抽出一部分对象进行考察的调查方式。在一个统计问题中,我们把所要考察对象的全体叫做总体(population),其中的每一个考察对象叫做个体(individual),从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量(samplesize)。例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。为了使抽取的'50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样(simplerandomsampling)。师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。学生小组合作、讨论,学生代表展示结果。教师指导、评论。师:除了问卷调查外,我们还有哪些方法收集到数据呢?学生小组讨论、交流,学生代表回答。师:收集数据的直接方法有访问、调查、观察、测量、试验等,间接方法有查阅资料、上网查询等。就以下统计的数据,你认为选择何种方法去收集比较合适?(1)你班中的同学是如何安排周末时间的?(2)我国濒临灭绝的植物数量;(3)某种玉米种子的发芽率;(4)学校门口十字路口每天7:00~7:10时的车流量。学生讨论,并举手回答。师:采用何种方法一定要结合实际问题来定。在解决问题(1)的过程中,不但要同学们动手调查,并且对全班所有学生都要调查,像这样对全体对象进行的调查叫做全面调查(普查)。同学们还知道哪些数据的收集需要全面调查吗?学生讨论,并回答。生:如人口普查、本班同学的出生年月、某班学生50米跑成绩等。师:很好!下列问题也适合采用普查方式来收集数据吗?(1)了解某批次炮弹的杀伤半径;(2)某一天全国牛肉的平均价格;(3)一批罐头产品的质量检查;(4)对某条河的河水的污染情况的调查。学生讨论、分析,并举手回答。师:普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受到客观条件(如人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。二、例题讲解【例】(1)电视台准备在某市调查一电视节目的收视率,需要对所有看电视的人进行全面调查吗?对一所中学学生的调查结果能否作为该节目的收视率?(2)对本年级同学是否喜欢某电视节目调查的结果,能代表学校全体同学的意见吗?如果不适用,应如何改进调查方法?解:(1)电视台不可能对每个看电视的人进行全面调查。对这?所中学学生的调查结果不能作为该节目的收视率,因为调查对象只有中学生,缺乏代表性;(2)对本年级同学是否喜欢某电视节目的调查结果不能代表《6。2普查与抽样调查》课时练习2。下列事件中最适合使用普查方式收集数据的是()A。为制作校服,了解某班同学的身高情况B。了解全市初三学生的视力情况C。了解一种节能灯的使用寿命D。了解我省农民的年人均收入情况答案:A解析:解答:A。人数不多,适合使用普查方式,所以A正确;B。人数较多,结果的实际意义不大,因而不适用普查方式,所以B错误;C。是具有破坏性的调查,因而不适用普查方式,所以C错误;D。人数较多,结果的实际意义不大,因而不适用普查方式,所以D错误。故选:A。分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似。此题考查了抽样调查和全面调查,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查选用普查。《6。2普查与抽样调查》基础巩固1、(知识点1)要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是()A、选取该校一个班级的学生B、选取该校50名男生C、选取该校50名女生D、随机选取该校50名九年级学生2、(题型二)下列调查适合用抽样调查的是()A、了解义乌电视台“同年哥讲新闻”栏目的收视率B、了解禽流感H7N9确诊病人同机乘客的健康状况C、了解某班每个学生家庭电脑的数量D、“神七”载人飞船发射前对重要零部件的检查3、(题型三)为了了解某市八年级男生的身高,有关部门准备对200名八年级男生的身高做调查,以下调查方案中比较合理的是()A、查阅外地200名八年级男生的身高统计资料B、测量该市一所中学200名八年级男生的身高C、测量该市两所农村中学各100名八年级男生的身高D、在该市市区任选两所中学,农村任选两所中学,每所中学用抽签的方法分别选出50名八年级男生,然后测量他们的身高初一上册数学教案2教学目标:知识与技能1.掌握直角三角形的判别条件,并能进行简单应用;2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.情感态度与价值观敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.教学重点运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.教学难点会辨析哪些问题应用哪个结论.课前准备标有单位长度的细绳、三角板、量角器、题篇教学过程:复习引入:请学生复述勾股定理;使用勾股定理的前提条件是什么?已知△ABC的两边AB=5,AC=12,则BC=13对吗?创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法.这样做得到的是一个直角三角形吗?提出课题:能得到直角三角形吗讲授新课:⒈如何来判断?(用直角三角板检验)这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)⒉继续尝试:下面的三组数分别是一个三角形的三边长a,b,c:5,12,13;6,8,10;8,15,17.(1)这三组数都满足a2+b2=c2吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?⒊直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.⒋例1一个零件的形状如左图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?随堂练习:⒈下列几组数能否作为直角三角形的三边长?说说你的理由.⑴9,12,15;⑵15,36,39;⑶12,35,36;⑷12,18,22.⒉已知?ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形,______是角.⒊四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.⒋习题1.3课堂小结:⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.⒉满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.初一上册数学教案3教学目标:1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。重点难点:重点:了解勾股定理的由来,并能用它来解决一些简单的问题。难点:勾股定理的发现教学过程一、创设问题的情境,激发学生的学习热情,导入课题出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。出示投影2(书中的P2图1—2)并回答:1、观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。正方形B中有_______个小方格,即A的面积为______个单位。正方形C中有_______个小方格,即A的面积为______个单位。2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:3、图1—2中,A,B,C之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C的关系呢?二、做一做出示投影3(书中P3图1—4)提问:1、图1—3中,A,B,C之间有什么关系?2、图1—4中,A,B,C之间有什么关系?3、从图1—1,1—2,1—3,1|—4中你发现什么?学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。三、议一议1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?2、你能发现直角三角形三边长度之间的关系吗?在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”也就是说:如果直角三角形的两直角边为a,b,斜边为c那么我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)四、想一想这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?五、巩固练习1、错例辨析:△ABC的两边为3和4,求第三边解:由于三角形的两边为3、4所以它的第三边的c应满足=25即:c=5辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题△ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并为交待C是斜边综上所述这个题目条件不足,第三边无法求得。2、练习P7§1.11六、作业课本P7§1.12、3、4教学目标:1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。2.掌握勾股定理和他的简单应用重点难点:重点:能熟练运用拼图的方法证明勾股定理难点:用面积证勾股定理教学过程七、创设问题的情境,激发学生的学习热情,导入课题我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7图1—7)接着提问:大正方形的面积可表示为什么?(同学们回答有这几种可能:(1)(2))在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。=请同学们对上面的式子进行化简,得到:即=这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。八、讲例1.飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?分析:根据题意:可以先画出符合题意的图形。如右图,图中△ABC的米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB的长,由于直角△ABC的斜边AB=5000米,AC=4000米,这样的CB就可以通过勾股定理得出。这里一定要注意单位的换算。解:由勾股定理得即BC=3千米飞机20秒飞行3千米,那么它1小时飞行的距离为:答:飞机每个小时飞行540千米。九、议一议展示投影2(书中的图1—9)观察上图,应用数格子的方法判断图中的三角形的三边长是否满足同学在议论交流形成共识之后,老师总结。勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。十、作业1、1、课文P11§1.21、22、选用作业。初一上册数学教案4学习目标:1、理解有理数的绝对值和相反数的意义。2、会求已知数的相反数和绝对值。3、会用绝对值比较两个负数的大小。4、经历将实际问题数学化的过程,感受数学与生活的联系。学习重点:1.会用绝对值比较两个负数的大小。2.会求已知数的相反数和绝对值。学习难点:理解有理数的绝对值和相反数的意义。学习过程:一、创设情境根据绝对值与相反数的意义填空:1、2、-5的相反数是______,-10.5的相反数是______,的相反数是______;3、|0|=______,0的相反数是______。二、探索感悟1、议一议(1)任意说出一个数,说出它的绝对值、它的相反数。(2)一个数的绝对值与这个数本身或它的相反数有什么关系?2、想一想(1)2与3哪个大?这两个数的绝对值哪个大?(2)-1与-4哪个大?这两个数的绝对值哪个大?(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?(4)两个有理数的大小与这两个数的绝对值的大小有什么关系?三.例题精讲例1.求下列各数的绝对值:+9,-16,-0.2,0.求一个数的绝对值,首先要分清这个数是正数、负数还是0,然后才能正确地写出它的绝对值。议一议:(1)两个数比较大小,绝对值大的那个数一定大吗?(2)数轴上的点的大小是如何排列的?例2比较-10.12与-5.2的大小。例3.求6、-6、14、-14的绝对值。小节与思考:这节课你有何收获?四.练习1.填空:⑴的符号是,绝对值是;⑵10.5的符号是,绝对值是⑶符号是+号,绝对值是的数是⑷符号是-号,绝对值是9的数是;⑸符号是-号,绝对值是0.37的数是.2.正式足球比赛时所用足球的质量有严格的规定,下表是6个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数).请指出哪个足球质量最好,为什么?第1个第2个第3个第4个第5个第6个-25-10+20+30+15-403.比较下面有理数的大小(1)-0.7与-1.7(2)(3)(4)-5与0五、布置作业:P25习题2.35家庭作业:《评价手册》《补充习题》六、学后记/教后记这篇初一上册数学教案就为大家分享到这里了。希望对大家有所帮助!初一上册数学教案5一:教材分析:1:教材所处的地位和作用:本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。在提高学生的能力,培养他们对数学的兴趣以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。2:教育教学目标:(1)知识目标:(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。(B)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。(3)思想目标:通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。3:重点,难点以及确定的依据:根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。二:学情分析:(说学法)1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。2:学生在列方程解应用题时,可能存在三个方面的困难:(1)抓不准相等关系;(2)找出相等关系后不会列方程;(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。4:学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。三:教学策略:(说教法)如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:1:“读(看)——议——讲”结合法2:图表分析法3:教学过程中坚持启发式教学的原则教学的理论依据是:1:必须先明确根据应用题题意列方程是重点,同时也是难点的观点,在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相等关系,并列出代数式表示这相等关系的左边和右边。为此,在教学过程中要让学生明确知晓解题步骤,通过例1可以让学生大致了解列出一元一次方程解应用题的方法。2:在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后,如例1中,不能把“设原来有_千克面粉”写成“设原来有_”。另外,在列方程中,各代数式的单位应该是相同的,如例1中,代数式“_字串7”“—15%_”“42500”的单位都是千克。在本例教学中,关键在于找出这个相等关系,将其中涉及待求的某个数设为未知数,其余的数用已知数或含有已知数与未知数的代数式表示,从而列出方程。在例1中的相等关系比较简单明显,可通过启发式让学生自己找出来。在例1教学中同时让学生巩固解一元一次方程应用题的五个步骤,特别是第2步是关键步骤。3:针对学生在列方程解应用题中可能存在的三个方面的困难,在教学过程中有意识加以解决,特别是学生抓不准相等关系这方面,可以让学生通过表格,图表等形式帮助学生找出相等关系表示成方程。如例1在分析过程中通过表格让学生明了清楚直观解决列方程的难点。4:通过图表对比使学生更直观,理解更深刻,同时,降低了理论教学的难度和分量,提高课堂教学效益(教学手段)。5:在课后习题的安排上适当让学生通过模仿例题的思想方法,加深学生解应用题的能力,这主要由于学生刚刚入门,多进行模仿,习惯以后,再做与例题不一样的习题,可以提高运用知识能力,同时让学生进行一题多解,找出共同点,区别或最佳列法,以开阔学生的思路。四:教学程序:(一):课堂结构:复习提问,导入讲授新课,课堂练习,巩固新课,布置作业五个部分。(二):教学简要过程:1:复习提问:(1):什么叫做等式?(2):等式与方程之间有哪些关系?(3):求_的15%的代数式。(4):叙述代数式与方程的区别。(理由是:通过复习加深学生对等式,方程,代数式之间关系的理解,有利于学生熟练正确根据题意列出一元一次方程,从而有利降低本节的难度。)2:导入讲授新课:(1):教具:一块小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论