




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
分数的性质教案(合集11篇)分数的性质教案第1篇
学习内容:
教材第69页例1、例2,以及70页“做一做”。
学习目标:
1.我能理解真分数和假分数的意义。
2.我能掌握真分数和假分数的特点。
学习重点:
理解真分数和假分数的意义。
学习难点:
掌握真分数和假分数的特点,掌握假分数与整数的互化。
学习过程:
一、导入新课
二、合作探究、检查独学
1.小组内检查独学部分的题目完成情况,质疑探讨。
2.思考:(1)理解真分数和假分数的意义,说一说自己的思维过程。
我的想法:________________________________。
(2)哪些假分数可以化成整数?哪些假分数不能化成整数?
我的想法:________________________________。
3.小组代表展示、汇报
4.总结升华:
我认识了________________的特征,真分数的分子比分母________,真分数____1;假分数的分子比分母________或分子和分数________,假分数____1。
5.我能行:完成课本第70页“做一做”。
(1)下列分数哪些是真分数,哪些是假分数?
真分数:();
假分数:()。
(2)完成第70页“做一做”第2题。(做在书上)
分数的性质教案第2篇
教学目标
进一步理解掌握分数基本性质在通分中的运用,能熟练而灵活地运用通分的方法进行分数的大小比较。
教学重难点
旋择适当的方法进行分数的大小比较。
教学准备
分数卡片
教学过程
一、基本练习
学生自由练习
互相说一个分数,再通分。
学生汇报纠错
二、集中练习
三、解决实际问题的练习
小明:我10步走了6米,
小红:我7步走了4米。
问:谁的平均步长长一些?
小组讨论,明确解题步骤。
小明:6÷10==
小红:4÷7=
答:小明的平均步长长一些。
四、课堂作业
68页第11题
分数的性质教案第3篇
【教学目标】
知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。
认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。
理解和掌握分数的基本性质,会比较分数的大小。
理解公因数与最大公因数、公倍数与最小公倍数的意义,能找出两个数的最大公因数与最小公倍数,能比较熟练地约分和通分。
会进行分数与小数的互化。
【重点难点】
分数的意义和分数的基本性质。
理解单位“1”的含义。
【教学指导】
充分利用教材资源,用好直观手段。
本单元教材在加强教学与现实世界的联系上做了不少努力,同时,教材还运用了多种形式的直观图式数形结合,展现了数学概念的几何意义,从而为老师与学生提供了丰富的学习资源。教学时,应充分利用这些资源,发挥形象思维和生活体验对于抽象思维的支持作用。
及时抽象,在适当的水平上,构建数学概念的意义。
为了搞好本单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。因此,在充分展开直观教学,让学生获得足够的感性认识的基础上,要不失时机地引导学生由实例、图式加以概括,构建概念的意义。
揭示知识与方法的内在联系,在理解的基础上掌握方法。
在本单元中,假分数化为带分数或整数,约分与通分,分数与小数互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。因此,教学时不宜就方法论方法,而应突出方法的过程,使学生明白操作方法背后的算理,这样就能依靠理解掌握方法,而不是依赖记忆学会操作。
【课时安排】建议共分17课时
分数的意义3课时
真分数和假分数2课时
分数的基本性质2课时
约分4课时
通分4课时
分数和小数的互化2课时
【知识结构】
分数的性质教案第4篇
教学目标:
1、让学生通过经历预测猜想——实验观察——数据处理—合情推理—探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
3、培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。
教学重点:
使学生理解分数的基本性质。
教学难点:
让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教具准备:
课件,五年级数学学具盒,计算器。
教学过程:
一、呈现材料,发现问题
1、师:老师这儿有一个关于孙悟空在花果山上做美猴王时发生的故事,想听吗?
花果山上的小猴子最喜欢吃美猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均分成四块,分给猴1一块,猴2见了说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块,猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均分成十二块,分给猴3三块。
[评析:创设情境,在学生喜欢的人物分饼的故事中直接导入本课,这样设计可以吸引学生的注意,让学生主动感知,主动去思考,激起学生的探究兴趣,让学生产生想获知结果的。内含情感与态度目标:孙悟空,做事认真仔细,机智,勇敢,本事大等。]
师:听到这里,你有什么想法吗?或你有什么话要说吗?
生1:我觉得孙悟空很聪明。
生2:我认为三只小猴分到的饼是一样多的。
生3:我认为猴王这样分很公平,第1只小猴分到了一只饼的1/4,第2只小猴分到了一只饼的2/8,第3只小猴分到了一只饼的3/12,这三只小猴分到的饼是一样多的。
[评析:一般的教师会在这里提出“哪只猴子分得的饼多?”或“你认为猴王这样分公平吗?”这样的问题。但这位教师却提出“听到这里,你有什么想法吗?或你有什么话要说吗?”。这个问题优于前两个问题是因为学生在思考时思路更深、更广。有效的问题有助于摆脱思维的滞涩和定势,促使思维从“前反省状态”进入“后反省状态”,问题的解决带来“顶峰”的体验,从而激励再发现和再创新,有效的问题有时深藏在潜意识或下意识中,“顿悟”由此而生。有效的创设问题可以激发学生创新意识。内含情感与态度目标,体现公平。]
2、师:大家都觉得其实三只小猴分到的饼一样多,那你们有什么方法来证明一下自已的想法,让这三只小猴都心服口服呢?怎么验证?
(1)师引导学生充分利用桌面上学具盒中的学具(其中一条长方形纸片为事先放入,其它都是五年级数学学具盒中原有的),小组合作,共同验证这三个分数的大小?
(2)师:实验做完了吗?结果怎样?哪个小组先来汇报验证的情况?
组1:我们组把24根小棒看作单位“1”,平均分成4份,其中的一份有6根,就是1/4。平均分成8份,其中的二份有6根,就是2/8。平均分成12份,其中的3份也有6根,就是3/12。所以1/4=2/8=3/12。
组2:我们组把24个小立方体看作单位“1”,平均分成4份,其中的一份有6个,就是1/4。平均分成8份,其中的二份有6个,就是2/8。平均分成12份,其中的3份也有6个,就是3/12。所以1/4=2/8=3/12。
组3:我们把一个圆平均分成4份,取其中的一份是1/4,我们把同样大小的圆平均分成8份,取其中的两份是2/8,我们再把同样大小的圆平均分成12份,其中的3份用3/12表示,我们再把圆片的1/4、2/8、3/12叠起来是一样大的,所以1/4=2/8=3/12。(注1/4圆是学具中本来就有的,2/8是用两个1/4圆合在一起,3/12是用2个1/3合在一起)
组4:我们组是这样验证的。我们把同样大小的长方形纸平均分成4份,其中的一份是1/4,取另外一张再平均分成8份,其中的两份是2/8,接着取另外一张继续平均分成12份,其中的3份是3/12,然后也叠在一起,大小一样,所以我组也认为1/4=2/8=3/12。
组5:我组与他们的验证方法都不一样,我们是计算的:1/4=1÷4=0.25;2/8=2÷8=0.25;3/12=3÷8=0.25。三个分数都等于0.25,所以1/4=2/8=3/12。
[评析:书本上的设计是用折纸来验证这三个分数相等,在这里执教者大胆的放大教材,把一系列探究过程放大,把“过程性目标”凸显出来。同时也为学生探究方法的多元化创造了条件,出现了多种验证的方法。还有这样设计把一些知识联系起来,用计算器的目的,是和五年级上学期的一节计算器课联系起来,而且为验证猜想做准备,可以比较分数的大小,节约时间。和单位“1”的概念联系起来,体现出了单位“1”概念中的两层含意。]
3、组织讨论
(1)师:既然三只小猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?(投影出示分饼图)
板书1/4=2/8=3/12
(2)你能从图上找到另一组相等的分数吗?
板书3/4=6/8=9/12
[评析:书本例1为比较3/46/8和9/12的大小。执教者在创设情景时选择的分数是有目地的]
4、引入新课
师:黑板上二组相等的分数有什么共同的特点?学生回答后板书。
生:分数的分子和分母变化了,分数的大小不变。
师:我们今天就来共同研究这个变化的规律。
5、引导猜测
师:你们猜猜看,在这两组相等的分数中,分子和分母发生了怎样的变化,而分数的大小不变。
生1:分子和分母都乘以一个相同的数,分数的大小不变。
生2:分子和分母都除以一个相同的数,分数的大小不变。
生3:分子和分母都加上一个相同的数,分数的大小不变。
生4:分子和分母都减去一个相同的数,分数的大小不变。
师:根据学生回答板书
[评析:这样设计注意了知识背景的丰富性,拓宽了“分数基本性质”的研究背景。在教学中,学生充分观察学习材料,发现问题后,教师引导学生提出猜测。学生的实际猜想可能会出现观点不一,表达方式不同,或者不够完整,甚至是错误的,这都不重要,重要的是它是根据学生已有的知识经验提出的,能够自已提出问题,已经向探索迈出了可喜的一步。教师留给了学生足够的思空间,让学生充分展现心中的疑惑,呈现了四种不同的假说。如此一来,学生不但是进入到了知识的学习过程中,更是进入到了知识的研究过程中。“分数基本性质”的研究背景从知识层面上来看已经拓宽了,从以前的只局限于“分子和分母同时乘(或除以)一个相同的数,分数的大小不变”拓宽到对““分子和分母同时乘(或除以、或加上、或减去)一个相同的数,分数的大小不变”的研究,有利于学生更为充分地经历“性质”形成的过程,全面地理解和认识“分数的基本性质”,同时还为沟通加、减、乘、除四种情况在分数的大小不变过程中的区别和联系奠定了基础。]
二、活动研究,探究规律。
1、引导研究,感知规律
师:猜测是不一定正确的,需要通过验证才能知道猜测是不是有道理,规律是否存在。我们需要对以上的猜测进行验证。你们准备如何进行验证?
生:举一些例子来验证
师:怎样举例验证呢?我们以其中的一个猜测来试试看好吗?我们选哪一个为好?
生:分子和分母都乘以一个相同的数,分数的大小不变。
师:好,我们就选这个,试试看。
学生以小组为单位进行尝试验证,教师作适当指导。
反馈:根据学生回答板书
1/2=0.5
1×2/2×2=2/4=0.5
1×3/2×3=3/6=0.5
师:看了这些小组的举例验证,能说明这个猜测有道理吗?
有什么要补充的吗?
(学生没有答出0除外)
师:谁能写出几个与1/3相等的分数。比一比谁写的多。
生回答,师板书1/3=2/6=3/9……
师:这样写得完吗?
生:不能
师:分子和分母是不是可以乘以所有的数。
生:0要除外。
师:为什么0要除外呢?
生:0不能做除数,也不能做分母。
[评析:学生在巩固知识的过程中得出结论:这样是永远也写不完的。这时,教师适时点拨,将学生的思维引向更深层次,从而自然得出“0除外”的结论。这样形成的记忆是深刻的。]
2、自主研究,理解规律
师:我们已经用举例验证的方法验证了“分数的分子和分母都乘以一个相同的数分数的大小不变是正确的。那么,其它三个猜测是不是也是正确的呢?接下来我们每一个小组选取一个猜想进行验证。
学生自由选择,教师适当进行调配。
师:为了在研究中能够节约时间,我给大家提供了一些材料,你可以借助这些材料进行验证。当然,你有更好的方法也可以用。
学生小组合作进行研究,教师作适当指导。反馈交流
小结
师:看来在分数里,只有分数的分子和分母都乘或都除以相同的数(0除外)分数的大小不变,而分子和分母同时增加或者同时减少相同的数,分数的大小是会变的。这就是我们今天学习的内容。
出示课题:分数的基本性质
师:你们认为性质中哪几个字是关键字。
生:“都”,“相同的数”,“0除外”
生齐读投影上的分数的基本性质
[评析:这样的设计使学生对四个“假说”的验证过程认知比较充分。这不仅为学生准确理解和把握“分数的基本性质”提供了丰富的感性材料,同时,也为学生体验数学学习的过程创造了条件。教师在该环节的处理上出于对学生实际的考虑,安排了两个层次。第一层次选择“分子和分母都乘以一个相同的数,分数的大小不变。”这一猜测进行验证,一是让学生充分体验一次验证的过程,认识到过程中的注意点,二是有利于教师下一步的调控和指导。正是有了这样的引导,学生在第二层次的独立验证活动中,才能够更多地关注数学学习内在的东西,排除了一些不必要的干扰。学生探究的过程比较清晰,对学习方法的体验也比较深刻、到位。由于这样的设计,使整节课的重心从关注知识的传授转移到关注学习方法的指导上。更重要的是这样的设计体现出了猜测——验证——结论的思维模式。]
3、沟通说明,揭示联系。
师:今天我们学习的分数的基本性质与我们以前学过的什么知识很相似。
生:商不变性质
出示商不变性质
师:分数的基本性质与商不变性质有什么相通的地方吗?
生:分数中的分子相当于除法中的被除数,分母相当于除法中的除数,分数值相当于商。
师:我们平时所学的有些知识和知识之间是有联系的。有时候与我们身边的事也是有联系的。
[评析:引导学生沟通分数的基本性质与商不变性质之间的联系,可以使学生体会到知识与知识之间有时是可以联系起来的。这样的设计有效的培养了学生的比较、分析、综合的能力。]
出示动画片断。(注孙悟空有一次因一时大意,被妖怪关在了一个金钵中,金钵能随孙悟空变大而变大,随孙悟空变小而变小,孙悟空出不来。)
师:孙悟空为什么跑不出来,这与我们今天学的知识是不是有点相似。
生:分数的基本性质。
[评析:数学中的概念是比较抽象的,这样的设计可以帮助学生理解和记忆。同时也可以让学生体会到知识与生活中的一些现象是可以联系的。
例如自从一八四五年德国化学家霍夫曼发现苯之后,许多化学家绞尽脑汁要它的分子结构,然而对当时的人类从未想到环状的分子结构的存在,所以化学家们纷纷撞壁而相继放弃。一八六五年某个寒夜,已经研究多年不肯罢手的化学家库凯里在一整天徒劳无功的探索后,歪在火炉边打盹,意识滑入梦乡,然后,奇怪的事情发生了,他在梦中看见一大堆原子在眼前雀跃,其中有一群原子排成长长的链,在那儿扭动、盘卷,再仔细一看,啊!是一条蛇咬住自己的尾巴,而且得意洋洋地在他面前猛烈旋转!像被闪电击中,库凯里立刻惊醒,领悟到苯的分子结构是前人未曾梦想过的封闭环状,难怪那些持旧有的开放式链状观点来研究的专家通通碰了一鼻子灰。从此,化学研究也因为这个革命性的发现而进入新的里程碑。在那个看见蛇咬尾巴的梦境中,库凯里领悟到苯的环状结构式。
这样设计可以使学生在回答什么是分数的基本性质时,先想到动画,再用语言表达出内容。同时也可以使学生体会到运用这样的思维方式为以后遇到难以解决的问题是可以提供一定的帮助的。内容情感与态度目标:做事或解题时不能粗心大意。]
师:猴王运用什么规律来分饼的?你们会运用今天的知识来解答问题吗?
三、应用性质,解决问题。
1、出示例2
思考:要把1/3和16/24分别化成分母是6而大小不变的分数,分子、分母怎么变化?变化的依据是什么?板书
2、多层练习,巩固深化
(1)书本试一试
游戏(第一关:初露锋芒、第二关:勇往直前、第三关:再接再厉、第四关:大获全胜。每一关都有相应的练习题)
[评析:练习设计层次安排合理、形式多样、由浅入深。采用游戏的形式,抓住学生好胜的心理,在不知不觉中完成了练习,节约了练习的时间。体现了趣味性、生动性、开放性。既巩固了新知,又发展了思维。]
四、课堂总结
师:今天我们学习了分数的基本性质,回忆一下,我们是怎样学的?
生1、我们是用举例的方法学的。
生2、我们是用验证的方法学的。
生3、我们是通过比较发现了规律。
师:是的,这节课我们在学习过程中,通过“猜想”、举例、验证等方式,概括得出了分数的基本性质并且运用这一知识解决了一些问题。
师:我这里还为大家准备了一个故事。(哥德猜想加陈景润的故事)
师:你听了有什么启发吗?课后同学们可以互相讨论一下。
[评析:让学生回忆这节课的学习历程和发现的一些规律,这样做更能体现“过程”。让学生带着问题下课,把对数学研究的兴趣延伸至课外,鼓励学生大胆创新。]
分数的性质教案第5篇
教学目标:
1、使学生初步理解单位“1”和分数单位的含义,进一步理解分数的意义;探索并理解分数与除法的关系,会用分数表示计量单位换算的结果,会求一个数是另一个数的几分之几的实际问题‘认识真分数和假分数,知道带分数是整数和真分数合成的数,会把假分数化成整数或带分数,会进行分数与小数的互化。
2、使学生探索并理解分数的基本性质,知道最简分数的含义,掌握约分和通分的方法,能正确进行约分和通分,会进行分数的大小比较。
3、使学生经历分数意义的抽象、概括过程以及分数与除法的关系、假分数化成整数或带分数、分数与小数互化的探索过程,进一步发展数感,培养观察、比较、抽象、概括等能力。
4、使学生初步了解分数在日常生活中的应用,增强自主探索与合作交流的意识,树立学好数学的信心。
教学重点、难点:
1、教学分数的含义,重点是建立单位“1”的概念。
2、以分数单位为新知识的生长点,教学真分数和假分数。
3、用分数表示同类两个数量的关系,扩展对分数意义的理解。
4、通过操作活动感受分数与除法的关系。
5、先特殊后一般,通过改写假分数,教学带分数。
6、优化小数与分数相互改写的教学。
7、理解分数的性质并进行通分和约分。
第1课时分数的意义
教学内容:
教材第52页例1和“练一练”,第58页练习八的第1~4题。
教学目标:
1、使学生初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义,能根据具体情境表示出相应的分数,联系实际情境解释或说明分数的具体意义;认识分数单位,能说明分数的组成。
2、使学生经历有具体到抽象的认识、理解分数意义的过程,感受分数的来源与形成,体会数的发展,培养观察、比较、分析、综合与抽象、概括的能力,感受分数与生活的联系,增强数学学习的信心。
教学重点:
认识和理解分数的意义。
教学难点:
认识和理解单位“1”。
教学方法:
探究合作法、讲解分析法、练习法等。
教学用具:ppt。
教学过程:
一、谈话导入,唤醒已知
在三年级,我们曾经分两次认识分数,今天这节课,我们要在以前学习的基础上,进一步认识分数。
二、合作探索,理解意义
1、教学例1
出示例1中的一组图
请大家根据每幅图的意思,用分数表示每个图中的涂色部分。写出分数后,再想一想:每个分数各表示什么?在小组内交流。
学生汇报所填写的分数,你认为这些图中分别是把什么平均分的?
一个饼可以称为一个物体,一个长方形是一个图形,“1米”是一个计量单位,而左起第四个图形是把6个圆看成一个整体。
左起第四个图形与前三个图形有什么不同?
一个物体,一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。
(1)在这几个图形中,分别把什么看成单位“1”的?
(2)分别把单位“1”平均分成了几份?用分数表示这样的几份?
(3)从这些例子看,怎样的数叫作分数?
拿12根小棒自已创造一个分数
说说你是怎么做的?
如果老师要表示6根小棒可以用什么分数表示?
2、完成“练一练”
第1题各图中的涂色部分怎样用分数表示?请大家在书上填空。说说是怎样想的。
每个分数的分数单位是多少?各有几个这样的分数单位?
第2题,观察直线上是把哪个部分看作“1”的?直线上表示是怎样想的?
引导:分数也可以在直线上表示。这里从0起到1是1个单位,同样地从1到2也是1个单位,这1个单位就是把单位1平均分成若干份,就可以用直线上的点表示分数。
让学生在()里填上合适的分数。
交流:你是怎样填的?为什么这样填?
三、巧妙联系,深化理解
1、做练习八的第1题
先让学生在每个图里涂色表示三分之二,再说说是怎样涂的、怎样想的。
同样是三分之二,为什么涂色桃子的个数不同?
2、做练习第2、3、4题。
第2题先读出每个分数,再说说每个分数的分数单位。
第3题让学生填,交流时说说是怎样填的。
第4题在研究分数时,把哪个数量平均分成若干份,这样的数量就是单位“1”
四、全可总结,延伸拓展
这节课学习了哪些内容?
分数的性质教案第6篇
教学目的
1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题.
2.培养学生观察、分析、思考和抽象、概括的能力.
3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.
教学过程
一、谈话
我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、
整数的互化方法.今天我们继续学习分数的有关知识.
二、导入新课
(一)教学例1.
出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.
1.分别出示每一个圆,让学生说出表示阴影部分的分数.
(1)把这个圆看做单位1,阴影部分占圆的几分之几?
(2)同样大的圆,阴影部分占圆的几分之几?
(3)同样大的圆,阴影部分用分数表示是多少?
2.观察比较阴影部分的大小:
(1)从4幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)
(2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)
3.分析、推导出表示阴影部分的分数的大小也相等:
(1)4幅图中阴影部分的大小相等.那么,表示这4幅图的4个分数的大小怎么样呢?
(这4个分数的大小也相等)
(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).
4.观察、分析相等的分数之间有什么关系?
(1)观察转化成,的分子、分母发生了什么变化?
(的分子、分母都乘上了2或的分子、分母都扩大了2倍.)
(2)观察
(二)教学例2.
出示例2:比较的大小.
1.出示图:我们在三条同样的数轴上分别表示这三个分数.
2.观察数轴上三个点的位置,比较三个分数的大小:
从数轴上可以看出:
3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.
(1)这三个分数从形式上看不同,但是它们实质上又都相等.
(教师板书:)
(2)你们分析一下,、各用什么样的方法就都可以转化成了呢?
三、抽象概括出分数的基本性质
1.观察前面两道例题,你们从中发现了什么变化规律?
“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)
2.为什么要“零除外”?
3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”
(板书:“基本性质”)
4.谁再说一遍什么叫分数的基本性质?
教师板书字母公式:
四、应用分数基本性质解决实际问题
1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?
(和除法中商不变的性质相类似.)
(1)商不变的性质是什么?
(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)
(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.
2.分数基本性质的应用:
我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解
决一些有关分数的问题.
3.教学例3.
例3把和化成分母是12而大小不变的分数.
板书:
教师提问:
(1)?为什么?依据什么道理?
(,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以,)
(2)这个“6”是怎么想出来的?
(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)
(3)?为什么?依据的什么道理?
(,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以,)
(4)这个“2”是怎么想出来的?
(这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)
五、课堂练习
1.把下面各分数化成分母是60,而大小不变的分数.
2.把下面的分数化成分子是1,而大小不变的分数.
3.在()里填上适当的数.
4.的分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?
5.请同学们想出与相等的分数.
规律:这个分数的值是,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个.
六、课堂总结
今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好.
七、课后作业
1.指出下面每组中的两个分数是相等的还是不相等的.
2.在下面的括号里填上适当的数.
分数的性质教案第7篇
教学目标
(一)理解和掌握分数的基本性质。
(二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
(三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。
教学重点和难点
(一)理解和掌握分数的基本性质。
(二)归纳分数的基本性质,运用性质转化分数。
教学用具
教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给
学具:每位同学准备三张相同的长方形纸片。
教学过程设计
(一)复习准备
1.口答:(投影片)
根据120÷30=4,不用计算直接说出结果:
(120×3)÷(30×3)=();(120÷10)÷(30÷10)=()。
2.说一说依据什么可以不用计算直接得出商的?
3.说出商不变的性质。
教师:除法有商不变性质,分数与除法又有关系,分数有没有类似的性质呢?下面就来研究这个问题。
(二)学习新课
1.分数基本性质。
(1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“1”同样大)教师把三张纸分贴在黑板上。
教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。
教师:请分别把它们平均分成2份;4份,6份(折出来),并分别给其中的1份,2份和3份涂上颜色或画上阴影。然后把涂了颜色的部分用分数表示出来。
学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:
教师:请比较这三个分数的大小?
你根据什么说这三个分数相等?
学生口答后老师用等号连结上面三个分数。
(2)教师:这几个分数的分子和分母都不相同,但三个分数的大小是相等的,下面我们来研究在保持分数大小不变的情况下,分子分母的变化有没有什么规律?
请同学观察,思考和讨论。投影出思考题:
如何?
结果如何改变,那么分子,分母同时乘以4,乘以5,乘以6呢?规律是什么?
学生口答后,教师小结并板书:分数的分子和分母同时乘以相同的数,分数大小不变。(留出“或者除以”的空位。)的变化规律是什么?(学生小组讨论后汇报)
教师板书:
教师:试说一说这时分子、分母的变化规律?
学生口答后老师小结:分数的分子和分母同时除以相同的数,分数大小不变。板书补出“除以”。
教师:想一想,分数的分子、分母都乘以或除以0可以吗?为什么?(不行。)
(3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。
学生口述分数基本性质的内容,老师把板书补充完整。
教师:这就是分数的基本性质,是这节课研究的问题。板书出课题:分数基本性质。
请学生打开书读两遍。
教师:想一想,如何用整数除法中商不变的性质说明分数基本性质?(举例说明)
用学生自己的例题说明后,用投影片再说明:
口答填空:(投影片)
2.把一个分数化成大小相等,而分子或分母是指定数的分数。
分子应怎样变化?谁随着谁变?
化?谁随着谁变?
教师:上面两个分数的变化依据是什么?
(2)口答练习:(学生口答,老师板书。)
教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。
(三)巩固反馈
1.口答:(投影片)
2.在括号里填上“=”或“≠”。(投影)
3.在()里填上适当的数。(投影)
4.判断正误,并说明理由。
(四)课堂总结与课后作业
1.分数基本性质。
2.把分数化成大小相同而分子或分母是指定数的分数的方法。
3.作业:课本108页练习二十三,1,2,4,5。
课堂教学设计说明
分数基本性质是在分数大小不变的前提下研究分子、分母的变化规律。所以在教学过程中,抓住“变化”作为主线,设计思考题引导学生观察、对比、分析,使学生在变化中找出规律、概括出分数的基本性质。安排例2,是让学生运用规律使分数产生变化。这样,从两方面方面加深学生对分数基本性质的理解。
在学生掌握了分数基本性质后,安排他们举例讨论,以沟通分数基本性质和商不变性质之间的内在联系,便于学生能把新旧知识融为一体。
在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。
新课教学分为两部分。
第一部分学习分数基本性质。分三层,通过学生活动,学生从直观上认识到分子、分母不相同的分数有可能相等;研究分子、分母的变化规律;概括分数基本性质,并用商不变性质来说明。
第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。
分数的性质教案第8篇
设计说明
1.注重情境创设,激发学生的学习兴趣。
伟大的科学家爱因斯坦说过:“兴趣是最好的老师。”也就是说一个人一旦对某个事物产生了浓厚的兴趣,就会主动地去求知、去探索、去实践,并在求知、探索、实践中产生愉快的情绪,因此教学时要重视兴趣在智力开发中的作用。本课时的教学通过分饼这一故事情境来创设一种和谐、愉悦的气氛,激发学生的学习兴趣和探究新知的积极性。听教师讲完故事之后,学生能说出三个孩子分到的饼的大小是一样的,并能非常流利地说出三个孩子分别分到每张饼的,接着教师提问设疑,导入新课。
2.突出学生的主体地位,在实践操作中掌握新知。
学生是学习的主体,教师要时刻关注学生的主体地位。在探究分数的基本性质的过程中,给予学生充分的学习空间,让学生自主探究,经历折一折、画一画、剪一剪、比一比的过程,得出分数的基本性质,体验成功的快乐。
课前准备
教师准备:PPT课件
学生准备:若干张同样大小的圆形纸片彩笔
教学过程
故事引入
1.教师讲故事。
师:老师给大家讲一个分饼的故事,你们想听吗?(想)三毛家有三兄弟,三兄弟都特别爱吃饼。一天,妈妈买回3张同样大小的饼,准备分给他们三兄弟吃,妈妈先把第一张饼平均分成两份,取出其中的一份给了大毛;二毛看见了,说:“太少了,我要吃两份。”妈妈点点头,把第二张饼平均分成四份,取出其中的两份给了二毛;三毛连忙说:“我最小,我要比他们多吃一些,我要吃四份。”妈妈又点点头,把第三张饼平均分成八份,取出其中的四份给了三毛。
大毛、二毛、三毛都满意地笑了,妈妈也笑了。
设计意图:借助故事给学生创设一个温馨的学习情境,自然导入新课,迅速吸引学生的注意力,激发学生的学习兴趣。
2.探究验证。
(1)提出猜想。
师:同学们,你们知道三兄弟之间到底谁分得的饼多吗?
生:同样多。
师:这只是大家的猜想,大家的猜想对不对呢?下面就让我们当一次小数学家,一起来验证这个猜想吧!
(2)验证猜想。
请同学们拿出课前准备好的圆形纸片,模拟一下妈妈给三兄弟分饼的情境。
①折一折:把每张圆形纸片都看作单位“1”,分别把它们平均折成2份、4份、8份。
②涂一涂:在折好的圆形纸片上分别把其中的1份、2份、4份涂上颜色,并用分数表示出来。
③剪一剪:把圆形纸片中的涂色部分剪下来。
④比一比:把剪下的涂色部分重叠,比一比。
师:通过比较,结果是怎样的?
生:同样大。
设计意图:通过自主猜想、自主验证、自主发现,让学生在折一折、涂一涂、剪一剪、比一比、说一说的实践活动中把静态的知识转化为动态的求知过程,经历分数的基本性质的形成过程。
3.揭示课题。
师:三兄弟分得的饼同样多,那妈妈是用什么办法来满足他们的要求并且又分得那么公平的呢?这就是我们今天要学习的内容:分数的基本性质。(师板书,生齐读课题)
探究新知
1.观察比较,探究规律。
(1)请同学们观察,比较三个分数的大小。
师:三兄弟分得的饼同样多,那么这三个分数的大小是怎样的呢?(相等)
师:从这里我们可以知道,三兄弟分得的饼和剩下的饼同样多,都是一张饼的一半。
(2)请同学们仔细观察,这三个分数什么变了,什么没变?(分子、分母变了,大小没变)
师:这三个分数的分子、分母都不一样,大小却相等,这其中到底蕴藏着什么奥秘呢?
(课件出示:比较它们的分子和分母)
①从左往右看,是按照什么规律变化的?
②从右往左看,又是按照什么规律变化的?小组内讨论,交流一下你们的发现。
师:我们从左往右看,谁愿意说一说自己的发现?(分数的分子和分母同时乘相同的数,分数的大小不变)
师:我们从右往左看,谁愿意说一说自己的发现?[分数的分子和分母同时除以相同的数(0除外),分数的大小不变]
师:你们能把这两个发现合并成一句话吗?[分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变]
师:请同学们思考一下,这个数为什么不能是0?同桌之间讨论。(因为在分数中,分母不能为0,并且在除法里,0不能作除数,所以这个数不能是0)
(3)教师总结分数的基本性质。
分数的性质教案第9篇
教学目标
进一步理解掌握分数基本性质在通分中的运用,能熟练而灵活地运用通分的方法进行分数的大小比较。
教学重难点
旋择适当的方法进行分数的大小比较。
教学准备分数卡片
教学过程
一、基本练习
学生自由练习
互相说一个分数,再通分。
学生汇报纠错
二、集中练习
教师出示:比较下面各组分数的大小
1、和和
2、和和
请同学评讲
课本练习68页第九题把下面分数填入合适的圈内。
比大的分数有:
比小的分数有:
师生讨论:怎样快速的分类?
自由说一个比的分数。并说出理由。
三、解决实际问题的练习
小明:我10步走了6米,
小红:我7步走了4米。
问:谁的平均步长长一些?
小组讨论,明确解题步骤。
小明:6÷10==
小红:4÷7=
因为==>
所以>
答:小明的平均步长长一些。
四、拓展练习:
下面3名小棋手某一天训练的成绩统计
总盘数赢的盘数赢的盘数占总数的几分之几
张129
李107
赵138
谁的成绩最好?
小组合作集体解决题型。
三个分数的大小比较,怎样比较较好?
五、课堂作业
68页第11题
分数的性质教案第10篇
教学目标:
1.经历探索分数的基本性质的过程,理解分数的基本性质。能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2.经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。培养学生的观察、比较、归纳、总结概括能力。能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。
3.经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。体验数学与日常生活密切相关。
教学重点:
理解分数的基本性质。
教学难点:
能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数
教学过程:
一、创设情境,激趣引新
1、师:故事引入,揭示课题
同学们,你们听说过阿凡提的故事吗?今天老师这里有一个老爷爷分地的数学故事,你们想听吗?(课件出示画面)谁愿意把这个故事讲给大家听?指名读故事(尽可能有感情地)
故事:有位老爷爷要把一块地分给他的三个儿子。老大分到了这块地的,老二分到了这块地的,老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈大笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
2、师:你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?
3、学生猜想后畅所欲言。
4、同学们的想法真多啊!聪明的阿凡提是怎么让三兄弟停止争吵的?
二、探究新知,解决问题
1、动手操作、形象感知
(1)、三兄弟分的地真得一样多吗?你能用自己的方法证明吗?
(2)学生独立操作验证。
方法1、涂、折、画的方法
方法2、计算的方法。
方法3:商不变的性质。
(3)观察,说说你发现了什么?
2、出示做一做(1)
(1)请同学们认真观察,同桌之间说一说这三个图形的涂色部分分别表示什么意义,并用分数表示出来。
(3)观察,说说你发现了什么?==(课件揭示)
(4)交流:你还有什么发现?
分数的分子和分母变化了,分数的大小不变。
分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都乘以相同的数)(课件演示)
3、出示做一做图片(2),学生独立填写分数。
(1)说说你是怎么想的?
(2)交流,你发现了什么?(分数的分子和分母都除以相同的数,分数的大小不变。)(板书:都除以相同的数)
4、想一想:引导归纳分数的基本性质
(1)从刚才的演示中,你发现了什么?
板书:分数的分子、分母都乘以或除以相同的数,分数的大小不变。
(2)补充分数的基本性质:课件出示两个式子,问学生对不对?讲解关键词都、
相同的数、0除外。都可以换成哪个词?同时。
板书:分数的分子、分母都乘以或除以相同的数(0除外),分数的大小不变。
(3)揭题:分数的基本性质。先让学生在课本中找出分数基本性质中的关键字词并做上记号(画起来或圈出来),要求关键的字词要重读。(课件揭示)
5、梳理知识,沟通联系:分数基本性质与学过的什么知识有联系?你能举例说说吗?
师:我们学习了分数与除法的关系,知道分数可以写成除法的形式。现在我们把商不变性质,分数基本性质,分数与除法的关系这三者联系起来,你发现了什么?(生举例验证,如:3/4=34=(33)(43)=912=9/12)(课件揭示)
师:其实,数学知识中有许多地方是像商不变性质和分数基本性质一样相互沟通的,同学们要学会灵活运用,才能做到举一反三,触类旁通,取得事半功倍的效果。你们想挑战吗?
6、趣味比拼,挑战智慧
给你们一分钟时间,写出几个相等的分数,看谁写得既对又多。
交流汇报后,提问:如果给你时间,你还能不能写,到底能写几个?
三、多层练习,巩固深化。
1、考考你(第43页试一试和练一练第2题)。
2/3=()/186/21=2/()
3/5=21/()27/39=()/13
5/8=20/()24/42=()/7
4/()=48/608/12=()/()
2、涂一涂,填一填。(练一练第1题)
3、请你当法官,要求说出理由.(手势表示。)
(1)分数的分子、分母都乘或除以相同的数,分数的大小不变。()
(2)把15/20的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()
(3)3/4的分子乘3,分母除以3,分数的大小不变。()
(4)10/24=102/242=103/243()
(5)把3/5的分子加上4,要使分数的大小不变,分母也要加上4。()
(6)3/4=30/40=30/40()
4、找一找:课件出示信息:请帮小熊和小山羊找回大小相等的分数。
5、(1)把5/6和1/4都化成分母是12而大小不变的分数;
(2)把2/3和3/4都化成分子是6而大小不变的分数6、2/5分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?
四、拾捡硕果,拓展延伸。
1、看到同学们这么自信的回答,老师就知道今天大家的收获不少,谁来说说这节课你都收获了哪些东西?(或用分数表示这节课的评价,快乐和遗憾各占多少?)
2、学了这节课,现在你知道阿凡提为什么会笑,如果你是阿凡提,你会对三兄弟说些什么?从这个故事中,你还知道了什么?师总结:看来学好数学还是很重要的!祝贺同学们都跟阿凡提一样聪明!(献上有节奏的掌
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T-ZSM 0055-2024“领跑者”评价技术要求 烧结钕铁硼永磁材料
- 2025年度资质借用与投标环境保护合作协议
- 二零二五年度智能交通管理系统单方解除合同
- 2025年度跨海大桥旋挖灌注桩施工合同
- 二零二五年度防盗门市场调研与采购合作协议
- 二零二五年度生物技术专利申请合作协议
- 二零二五年度体育健身公司聘用兼职教练合同书
- 二零二五年度劳务派遣公司劳动合同范本(含合同解除与赔偿)
- 四川省2025年度房屋租赁租赁合同解除与终止合同
- 二零二五年度消费金融贷款连带保证合同书
- 教育的减法让孩子更幸福(课件)-小学生教育主题班会通用版
- 大格子作文纸模板
- 中考物理一轮复习策略与方法
- 祥云财富工业园区新建铁路专用线工程环评报告
- 药店换证材料
- 移动商务基础(吴洪贵)课件 第二章 探秘移动技术
- 动画剧本创作课件
- 痘痘肌肤的各种类型
- (完整版)设计管理
- 中国严重脓毒症脓毒性休克治疗指南2023年
- 材料性能学(第2版)付华课件0-绪论-材料性能学
评论
0/150
提交评论