下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本资料分享自千人教师QQ群323031380期待你的加入与分享本资料分享自千人教师QQ群323031380期待你的加入与分享古典概型【学习目标】1.理解古典概型的定义。2.会应用古典概型的概率公式解决实际问题。【学习重难点】1.古典概型的定义。2.古典概型的概率公式。【学习过程】一、问题导学什么叫古典概率模型?它有什么特点?二、合作探究古典概型的判断判断下列试验是不是古典概型:(1)口袋中有2个红球、2个白球,每次从中任取一球,观察颜色后放回,直到取出红球;(2)从甲、乙、丙、丁、戊5名同学中任意抽取1名担任学生代表;(3)射击运动员向一靶子射击5次,脱靶的次数。【解】(1)每次摸出1个球后,放回袋中,再摸1个球。显然,这是有放回抽样,依次摸出的球可以重复,且摸球可无限地进行下去,即所有可能结果有无限个,因此该试验不是古典概型。(2)从5名同学中任意抽取1名,有5种等可能发生的结果:抽到学生甲,抽到学生乙,抽到学生丙,抽到学生丁,抽到学生戊。因此该试验是古典概型。(3)射击的结果:脱靶0次,脱靶1次,脱靶2次,…,脱靶5次。这都是样本点,但不是等可能事件。因此该试验不是古典概型。eq\a\vs4\al()古典概型的计算(1)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫。从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.eq\f(4,5) B.eq\f(3,5)C.eq\f(2,5) D.eq\f(1,5)(2)(2018·高考江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________。【解析】(1)从5支彩笔中任取2支不同颜色的彩笔,样本空间为:{(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫)}。而取出的2支彩笔中含有红色彩笔的取法有(红,黄),(红,蓝),(红,绿),(红,紫),共4个样本点,故所求概率P=eq\f(4,10)=eq\f(2,5)。(2)记2名男生分别为A,B,3名女生分别为a,b,c,则从中任选2名学生样本空间为{(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c)},共10个样本点,其中恰好选中2名女生有(a,b),(a,c),(b,c),共3个样本点,故所求概率为eq\f(3,10)。【答案】(1)C(2)eq\f(3,10)【学习小结】1.古典概型一般地,如果随机试验的样本空间所包含的样本点个数是有限的(简称为有限性),而且可以认为每个只包含一个样本点的事件(即基本事件)发生的可能性大小都相等(简称为等可能性),则称这样的随机试验为古典概率模型,简称为古典概型。2.古典概型概率计算公式假设样本空间Ω含有n个样本点,事件A包含m个样本点,则P(A)=eq\f(m,n)。【精炼反馈】1.下列关于古典概型的说法中正确的是()①试验中所有样本点有有限个;②每个事件出现的可能性相等;③每个样本点出现的可能性相等;④样本点的总数为n,随机事件A若包含k个样本点,则P(A)=eq\f(k,n)。A.②④ B.①③④C.①④ D.③④2.下列是古典概型的是()①从6名同学中,选出4人参加数学竞赛,每人被选中的可能性的大小;②同时掷两颗骰子,点数和为7的概率;③近三天中有一天降雨的概率;④10个人站成一排,其中甲、乙相邻的概率。A.①②③④ B.①②④C.②③④ D.①③④3.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为()A.eq\f(1,2) B.eq\f(1,3)C.eq\f(1,4) D.eq\f(1,5)4.据报道:2019年我国高校毕业生达834万人,创历史新高,就业压力进一步加大。若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为________。【答案】1.解析:选B.根据古典概型的特征与公式进行判断,①③④正确,②不正确,故选B.2.解析:选B.①②④为古典概型,因为都适合古典概型的两个特征:有限性和等可能性,而③不适合等可能性,故不为古典概型。3.解析:选A.从1,2,3,4中任取两个不同数字构成一个两位数共有12种不同取法,其中大于30的为31,32,34,41,42,43共6种。故P=eq\f(6,12)=eq\f(1,2)。4.解析:记事件A:甲或乙被录用。从五人中录用三人,样本点有(甲,乙,丙)、(甲,乙,丁)、(甲,乙,戊)、(甲,丙,丁)、(甲,丙,戊)、(甲,丁,戊)、(乙,丙,丁)、(乙,丙,戊)、(乙,丁,戊)、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 市政道路雨污管网更新合同
- 通信基站电工维护合同
- 船舶制造维修合同
- 合同审查体会
- 合同签订延迟的声明
- 合同约定用三年技术服务费抵投资款会计处理
- 合同一份正反面,一份单面
- 合同违约简报
- 城市环保联合施工合同
- 2025年抵押借款合同范文
- 《麦当劳战略管理5800字(论文)》
- 工程伦理分析-切尔诺贝利
- 外墙用水泥纤维板接缝位置开裂问题及处理
- 超星尔雅学习通【中国近现代史纲要(首都师范大学)】章节测试含答案
- 金色年终汇报PPT模板
- 沭阳县国土空间总体规划(2021-2035)草案公示1
- C++初学者入门全篇
- 哈尔滨市商品房买卖合同书(最终定稿)
- 警犬行为理论考试题库(含答案)
- 财政与金融基础知识全套教学课件(中职)
- oppo其它-lpdt工作手册
评论
0/150
提交评论