版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第=page11页,共=sectionpages11页2022-2023学年山东省聊城市北大培文学校七年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分。在每小题列出的选项中,选出符合题目的一项)1.0.000066用科学记数法表示(
)A.0.66×10−4 B.6.6×102.如图所示,直线AB、CD被直线EF所截,直线EF与AB、CD分别交于点E、A.∠1与∠2互为同位角
B.∠4+∠5=180°3.下列运算中,正确的是(
)A.(−m6)÷(−m)4.若x2−(a+1A.−13 B.−11或13 C.11或−135.把一副直角三角板按如图所示摆放,使得BD⊥AC于点D,BC交DE于点FA.60° B.65° C.70°6.下列运算中,正确的有(
)A.0.2−1×(−15)=7.一个角的补角加上30°后,等于这个角的余角的4倍,则这个角的度数为(
)A.60° B.50° C.45°8.如果m2−m=1,那么代数式A.6 B.5 C.2 D.−9.已知x=1y=−1是aA.−35 B.35 C.12 D.10.一个多边形的每个内角都等于135°,则这个多边形的边数为(
)A.5 B.6 C.7 D.811.已知∠α=37°49′40″,∠A.90°;14°20′40° B.80°;14°20′12.如图,下列条件中,能判断AB//CDA.∠AEC=∠B
B.∠二、填空题(本大题共5小题,共15.0分)13.20=______.14.若等腰三角形的两边长分别是4和10,则三角形的周长是______.15.如图,AB⊥l1,AC⊥l2,已知AB=4,BC
16.已知点A(m+1,−2)和点B(3,17.观察下列各式:
(x−1)(x+1)=x2−1
三、解答题(本大题共8小题,共69.0分。解答应写出文字说明,证明过程或演算步骤)18.(本小题6.0分)
计算下列各题:
(1)|−2|19.(本小题9.0分)
因式分解:
(1)ab2−9a;20.(本小题8.0分)
解下列方程组:
(1)4x−321.(本小题8.0分)
(1)计算:(a−b)3;
(2)22.(本小题8.0分)
随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具,某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解1辆A型汽车、2辆B型汽车的进价共计50万元;3辆A型汽车、4辆B型汽车的进价共计120万元.
(1)求A、B两种型号的汽车每辆进价分别为多少万元?
(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买23.(本小题8.0分)
如图,直线AB与CD相交于点O,∠AOF=90°,∠COE=90°,∠24.(本小题10.0分)
已知:A(0,1),B(2,0),C(4,3)
(1)在坐标系中描出各点,画出△AB25.(本小题12.0分)
如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),把余下的部分剪拼成垄一个矩形.
(1)通过计算两个图形的面积(阴影部分的面积),可以验证的等式是:______.
A.a2−2ab+b2=(a−b)2
B.a2−b2=(a+b)(a−答案和解析1.【答案】C
【解析】解:0.000066=6.6×10−5.
故选:C.
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<2.【答案】D
【解析】解:A.∠1与∠2是邻补角,因此选项A不符合题意;
B.直线AB、CD被直线EF所截,虽然∠4与∠5是同旁内角,但AB与CD不一定平行,因此选项B不符合题意;
C.直线AB、CD被直线EF所截,虽然∠1与∠53同位角,但AB与CD不一定平行,因此选项C不符合题意;
D.直线AB、3.【答案】A
【解析】解:A.根据同底数幂的除法,(−m6)÷(−m)3=(−m6)÷(−m3)=m3,那么A正确,故A符合题意.
B.根据幂的乘方,(−a3)2=a64.【答案】A
【解析】解:已知等式整理得:x2−(a+1)x+36=(x+6)2=x2+125.【答案】D
【解析】解:∵BD⊥AC,
∴∠1=90°,
∴∠2=90°−45°=45°,
∴∠6.【答案】B
【解析】解:A.根据负整数指数幂,0.2−1×(−15)=−1,那么A错误,故A不符合题意.
B.根据有理数的乘方,24+24=32=25,那么B正确,故B符合题意.
C.根据有理数的乘方,−(7.【答案】B
【解析】解:设这个角的度数为x.
由题意得,180°−x+30°=4(90°−x).
∴8.【答案】A
【解析】解:m(m+2)+(m−2)2
=m2+2m+m2−4m+4
=2m2−9.【答案】B
【解析】解:∵x=1y=−1是ax+by=7bx−ay=5的解,10.【答案】D
【解析】解:∵一个正多边形的每个内角都为135°,
∴这个正多边形的每个外角都为:180°−135°=45°,
∴这个多边形的边数为:360°÷45°11.【答案】A
【解析】解:∵∠α=37°49′40″,∠β=52°10′20″,
∴∠α+∠β=37°49′4012.【答案】C
【解析】解:∵∠AEC=∠B,
∴EC//BF,故A不符合题意;
∵∠C+∠BFC=180°,
∴EC//BF,故13.【答案】1
【解析】解:20=1,
故答案为:1.
根据零指数幂的性质得出答案.
本题考查零指数幂,掌握“任意一个不为0的零次幂等于14.【答案】24
【解析】解:∵等腰三角形的两边分别是4和10,
∴应分为两种情况:①4为底,10为腰,则4+10+10=24;
②10为底,4为腰,而4+4<10,应舍去,
∴三角形的周长是24.
故填24.
15.【答案】4
【解析】解:∵AB⊥l1,
则点A到直线l1的距离是AB的长=4;
故答案为:416.【答案】5或−3【解析】解:∵点A(m+1,−2)和点B(3,n−1)且AB//x轴,
∴n−1=−2,
解得n=−1,
又∵AB=4,
∴m+1=7或m+1=−1,
解得m=6或m=−2,
当17.【答案】22023【解析】解:由题意得,(2−1)(22022+22021+218.【答案】解:(1)|−2|−(2−π)0+(−13)−【解析】(1)先计算负整数指数幂和零次幂,再化简绝对值,最后加减;
(2)19.【答案】解:(1)原式=a(b2−9)
=a(b+3)(b−【解析】(1)先提公因式a,得到a(b2−9),再利用平方差公式即可进行因式分解;
(2)先提公因式3得到3(20.【答案】解:(1)4x−3y=6①3x−y=7②,
由②,可得:y=3x−7③,
③代入①,可得:4x−3(3x−7)=6,
解得x=3,
把x=3代入【解析】(1)应用代入消元法,求出方程组的解是多少即可.
(2)21.【答案】解:(1)(a−b)3
=(a−b)⋅(a−b)2
=(a−b)⋅(a2−2ab【解析】(1)把立方运算进行转化,再根据多项式乘多项式的运算法则进行运算即可;
(2)利用完全平方公式,平方差公式,多项式乘多项式的运算法则对式子进行整理,再合并同类项,最后代入值求解即可.
22.【答案】解:(1)设每辆A型汽车的进价为x万元,每辆B型汽车的进价为y万元,
依题意得:x+2y=503x+4y=120,
解得:x=20y=15.
答:每辆A型汽车的进价为20万元,每辆B型汽车的进价为15万元.
(2)设购进m辆A型汽车,n辆B型汽车,
依题意得:20m+15n=200,
∴m=10−34n.
又∵m,n均为正整数,
∴m=7n=4或m=4n【解析】(1)设每辆A型汽车的进价为x万元,每辆B型汽车的进价为y万元,根据“1辆A型汽车、2辆B型汽车的进价共计50万元;3辆A型汽车、4辆B型汽车的进价共计120万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购进m辆A型汽车,n辆B型汽车,利用总价=单价×数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数,即可得出各购买方案.
本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(23.【答案】解:(1)∵∠AOF=90°,
∴∠BOF=90°,
∴∠DOF+∠BOD=90°,
【解析】(1)由已知可得,∠DOF与∠BOD互余,∠BOE与∠BOD互余,即可求出∠B24.【答案】解:(1)△ABC如图所示;
(2)作CE⊥y轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教学楼室内装修协议模板
- 家庭护理保姆服务合同样本
- 办公空间色彩搭配合同范本
- 咖啡店店员招聘协议书
- 城市文化中心地暖工程承包合同
- 环境保护企业消防整改施工合同
- 化工厂彩钢板翻新合同
- 劳动报酬零花钱协议
- 消防工程发包合同
- 常州乒乓球馆租赁合同
- 2024年PE工程师培训教材-助力工程师成长
- 机动车检测站新换版20241124质量管理手册
- 大部分分校:地域文化形考任务一-国开(CQ)-国开期末复习资料
- 【物理】期末复习练习 质量与密度 2024-2025学年人教版物理八年级上册
- 急性有机磷中毒急救护理
- 应用写作-终结性考核-国开(SC)-参考资料
- 2024年车辆工程大一大学生职业生涯规划书
- 2024年决战行测5000题言语理解与表达(培优b卷)
- 【培训课件】建设工程施工工地消防安全管理
- 2024届高考语文专题复习:文言文阅读专项练习题汇编(含答案)
- 2025年慢性阻塞性肺疾病全球创议GOLD指南修订解读课件
评论
0/150
提交评论