《同底数幂的乘法》教学案例【8篇】_第1页
《同底数幂的乘法》教学案例【8篇】_第2页
《同底数幂的乘法》教学案例【8篇】_第3页
《同底数幂的乘法》教学案例【8篇】_第4页
《同底数幂的乘法》教学案例【8篇】_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页《同底数幂的乘法》教学案例【优秀8篇】作为一名教学工,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么优秀的教案是什么样的呢?本文范文为朋友们整理了8篇《《同底数幂的乘法》教学案例》,在大家参考的同时,也可以分享一下本文范文给您的好友哦。

《同底数幂的乘法》教案篇一

一、教学目标

1.熟练掌握同底数幂的乘法的运算性质并能运用它进行快速计算.

2.培养学生运用公式熟练进行计算的能力.

3.培养学生善于分析问题和解决问题的能力,激发学生勇往直前的斗志.

4.渗透数学公式的结构美、和谐美.

二、学法引导

1.教学方法:讲授法、练习法.

2.学生学法:勤于练习,在练习中理解同底数幂的适用条件及运算方法.

三、重点·难点及解决办法

(一)重点

同底数幂的运算性质.

(二)难点

同底数幂运算性质的灵活运用.

(三)解决办法

在运算中应强化对公式及性质的形式、意义的理解,同时应加强对符号的判别.

四、课时安排

一课时.

五、教具学具准备

投影仪、胶片.

六、师生互动活动设计

1.复习同底数幂的乘法法则并能正确的判断是否合理使用了该法则,让学生能进一步准确掌握该法则.

2.通过两组举例(师生可共同完成),教师应侧重帮助学生分析解题的方法,并及时提醒学生注意易出错的环节.

3.再通过三组不同形式的题型从不同的角度训练学生的思维能力,以提高学生的辨别能力和运算能力.

七、教学步骤

(一)明确目标

本节课重点是熟练运用同底数暴的乘法运算公式.

(二)整体感知

要准确掌握同底数幂的乘法法则,并会运用它熟练灵活地进行同底数幂的乘法运算,对于运算法则,我们除了应掌握它们的正用:外,还要善于根据题目的结构特征,学会它们的逆向应用:,当然这个难度较大.在应用同底数幂乘法法则计算时,要注意防止把幂的乘法运算性质与整式加法相混淆.乘法只要求同底就可以用性质计算,而加法则不仅要求底数相同,而且指数也必须相同.

(三)教学过程

1.创设情境、复习导入

(1)叙述同底数幂乘法法则并用字母表示.

(2)指出下列运算的错误,并说出正确结果.

强调:①中的指数不为0,指数相加时不要漏加的指数.②不是同类项不能合并.③同底数幂相乘,指数相加不是相乘.

(3)填空:

①,

②,,

2.探索新知,讲授新课

例1计算:

(1)(2)(3)

解:(1)原式

(2)原式

(3)原式

例2计算:

(1)(2)

(3)(4)

解:(1)原式

(2)原式

(3)原式

(4)

或原式

提问:和相等吗?

3.巩固熟练

(1)P93练习(下)1,2.

(2)计算:

①②

③④

(3)错误辨析:

计算:①(是正整数)

解:

说明:化简错了,是正整数,是偶数,据乘方的符号法则本题结果应为0.

解:原式

说明:与不是同底数幂,它们相乘不能用同底数幂的乘法法则,正确结果应为

(四)总结、扩展

底数是相反数的幂相乘时,应先化为同底数幂的形式,再用同底数幂的乘法法则,转化时要注意符号问题.

八、布置作业

P94A组3~5;P95B组1~2.

《同底数幂的乘法》教案篇二

同底数幂的乘法

教学目标

1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;

2.在推导“性质”的过程当中,培养学生观察、概括与抽象的能力.

教学重点和难点

幂的运算性质.

课堂教学过程设计

一、运用实例导入新课

引例一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?

学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?

要解方程(x+3)(x+5)=x(x+2)+39必须将(x+3)(x+5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要要用到整式的乘法.(写出课题:第七章整式的乘除)

本章共有三个单元,整式的乘法、乘法公式、整式的除法.这与前面学过的整式的加减法一起,称为整式的四则运算.学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备.

为了学习整式的乘法,首先必须学习幂的运算性质.(板书课题:7.1同底数幂的乘法)在此我们先复习乘方、幂的意义.

二、复习提问

1.乘方的意义:求n个相同因数a的积的运算叫乘方,即

2.指出下列各式的底数与指数:

(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.

其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢

三、讲授新课

1.利用乘方的意义,提问学生,引出法则

计算103×102.

解:103×102=(10×10×10)+(10×10)(幂的意义)

=10×10×10×10×10(乘法的结合律)

=105.

2.引导学生建立幂的运算法则

将上题中的底数改为a,则有

a3·a2=(aaa)·(aa)

=aaaaa=a5,即a3·a2=a5=a3+2.

用字母m,n表示正整数,则有

=am+n,即am·an=am+n.

3.引导学生剖析法则

(1)等号左边是什么运算?(2)等号两边的底数有什么关系?

(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么?

(5)当三个以上同底数幂相乘时,上述法则是否成立?

要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

四、应用举例变式练习

例1计算:

(1)107×104;(2)x2·x5.

解:(1)107×104=107+4=1011;(2)x2·x5=x2+5=x7.

提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述.

课堂练习

计算:

(1)105·106;(2)a7·a3;(3)y3·y2;

(4)b5·b;(5)a6·a6;(6)x5·x5.

例2计算:

(1)23×24×25;(2)y·y2·y5.

解:(1)23×24×25=23+4+5=212.(2)y·y2·y5=y1+2+5=y8.

对于第(2)小题,要指出y的指数是1,不能忽略.

五、小结

1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.

2.解题时要注意a的指数是1.

六、作业

同底数幂的乘法篇三

(一)

一、素质教育目标

1.理解同底数幂乘法的性质,掌握同底数幂乘法的运算性质。

2.能够熟练运用性质进行计算。

3.通过推导运算性质训练学生的抽象思维能力。

4.通过用文字概括运算性质,提高学生数学语言的表达能力。

5.通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度。

二、学法引导

1.教学方法:尝试指导法、探究法。

2.学生学法:运用归纳法由特殊性推导出公式所具有的一般性,在探究规律过程中增进时知识的理解。

三、重点·难点及解决办法

(-)重点

幂的运算性质。

(二)难点

有关字母的广泛含义及“性质”的正确使用。

(三)解决办法

注意对前提条件的判别,合理应用性质解题。

四、课时安排

一课时。

五、教具学具准备

投影仪、自制胶片。

六、师生互动活动设计

1.复习幂的意义,并由此引入。

2.通过一组的练习,努力探究其规律,在探究过程中理解公式的意义。

3.教师示范板书,学生进行巩固性练习,以强化学生对公式的掌握。

七、教学步骤

(-)明确目标

本节课主要学习的性质。

(二)整体感知

让学生在复习幂的意义的基础之上探究的意义,只有在同底数幂相乘的前提条件之下,才能进行这样的运算方式即底数不变、指数相加。

(三)教学过程

1.创设情境,复习导入

表示的意义是什么?其中、、分别叫做什么?

师生活动:学生回答(叫底数,叫指数,叫做幂),同时,教师板书。

.

.

提问:表示什么?可以写成什么形式?______________

答案:;

【教法说明】此问题的提出,目的是通过回忆旧知识,为完成下面的尝试题和学习本节知识提供必要的知识准备。

2.尝试解题,探索规律

(1)式子的意义是什么?(2)这个积中的两个因式有何特点?

学生回答:(1)与的积(2)底数相同

引出本课内容:这节课我们就在复习“乘方的意义”的基础上,学习像这样的运算。

请同学们先根据自己的理解,解答下面3个小题。

;.

学生活动:学生自己思考完成,然后一个(或几个)学生回答结果。

【教法说明】

(1)让学生在已有知识的基础上感知规律的存在性、一般性,从而建立对同底数幂乘法法则的感性认识。

(2)培养学生运用已有知识探索新知识的热情。

(3)体现学生的主体作用。

3.导向深入,揭示规律

计算的过程就是

也就是

那么,当都是正整数时,如何计算呢?

(都是正整数)

(板书)

学生活动:同桌研究讨论,并试着推导得出结论。

师生共同总结:(都是正整数)

教师把结论写在黑板上。

请同学们试着用文字概括这个性质:

同底数幂相乘底数不变、指数相加

运算形式运算方法

提出问题:当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?

学生活动:观察(都是正整数)

【教法说明】注意对学生从特殊到一般的认识方法的培养,揭示新规律时,强调学生的积极参与。

4.尝试反馈,理解新知

例1计算:

(1)(2)

例2计算:

(1)(2)

学生活动:学生在练习本上完成例1、例2,由2个学生板演完成之生,由学生判断板演是否正确。

教师活动:统计做题正确的人数,同时给予肯定或鼓励。

注意问题:例2(2)中第一个的指数是1,这是学生做题时易出问题之处。

【教法说明】学生在认识的基础上,尝试运用性质,加深对性质的理解。学生做题正确与否,教师均应以鼓励为主,增强学生学习的信心。

5.反馈练习,巩固知识

练习一

(1)计算:(口答)

①②③

④⑤⑥

(2)计算:

①②③

④⑤⑥

学生活动:第(1)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查。

练习二

下面的计算对不对?如果不对,应怎样改正?

(1)(2)(3)

(4)(5)(6)

学生活动:此练习以学生抢答方式完成。注意训练学生的表述能力,以提高兴趣。

【教法说明】练习一主要是对性质运用的强化,形成定势。练习二中主要是通过学生对题目的观察、比较、判断,提高学生的是非辨别力。(1)(2)小题强调同底数幂乘法与整式加减的区别。(3)(4)小题强调性质中的“不变”、“相加”。(5)小题强调“”表示“”的一次幂。

6.变式训练,培养能力

练习三

填空:

(1)(2)

(3)(4)

学生活动:学生思考后回答。

【教法说明】这组题的目的是训练学生的逆向思维能力。

练习四

填空:

(1),则.

(2),则.

(3),则.

学生活动:学生同桌或前后左右结组研究、讨论,然后在练习本上完成。

【教法说明】此组题旨在增强学生应变能力和解题灵活性。

(四)总结、扩展

学生活动:1.同底数幂相乘,底数_____________,指数____________.

2.由学生说出本节体会最深的是哪些?

【教学说明】在1中强调“不变”、“相加”。学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力。

八、布置作业

P941,2.

参考答案

略。

《同底数幂的乘法》教案篇四

一、素质教育目标

1、理解同底数幂乘法的性质,掌握同底数幂乘法的运算性质。

2、能够熟练运用性质进行计算。

3、通过推导运算性质训练学生的抽象思维能力。

4、通过用文字概括运算性质,提高学生数学语言的表达能力。

5、通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度。

二、学法引导

1、教学方法:尝试指导法、探究法。

2、学生学法:运用归纳法由特殊性推导出公式所具有的一般性,在探究规律过程中增进时知识的理解。

三、重点难点及解决办法

(一)重点

幂的运算性质。

(二)难点

有关字母的广泛含义及性质的正确使用。

(三)解决办法

注意对前提条件的判别,合理应用性质解题。

四、课时安排

一课时。

五、教具学具准备

投影仪、自制胶片。

六、师生互动活动设计

1、复习幂的意义,并由此引入同底数幂的乘法。

2、通过一组同底数幂的乘法的练习,努力探究其规律,在探究过程中理解公式的意义。

3、教师示范板书,学生进行巩固性练习,以强化学生对公式的掌握。

七、教学步骤

(-)明确目标

本节课主要学习同底数幂的乘法的性质。

(二)整体感知

让学生在复习幂的意义的基础之上探究同底数幂的乘法的意义,只有在同底数幂相乘的前提条件之下,才能进行这样的运算方式即底数不变、指数相加。

(三)教学过程

1.创设情境,复习导入

表示的意义是什么?其中、、分别叫做什么?

师生活动:学生回答(叫底数,叫指数,叫做幂),同时,教师板书。

提问:表示什么?可以写成什么形式?______________

答案:;

【教法说明】此问题的提出,目的是通过回忆旧知识,为完成下面的尝试题和学习本节知识提供必要的知识准备。

2.尝试解题,探索规律

(1)式子的意义是什么?(2)这个积中的两个因式有何特点?

学生回答:(1)与的积(2)底数相同

引出本课内容:这节课我们就在复习乘方的意义的基础上,学习像这样的同底数幂的乘法运算。

请同学们先根据自己的理解,解答下面3个小题。

;。

学生活动:学生自己思考完成,然后一个(或几个)学生回答结果。

【教法说明】

(1)让学生在已有知识的基础上感知规律的存在性、一般性,从而建立对同底数幂乘法法则的感性认识。

(2)培养学生运用已有知识探索新知识的热情。

(3)体现学生的主体作用。

3.导向深入,揭示规律

计算的过程就是

也就是

那么,当都是正整数时,如何计算呢?

(都是正整数)

(板书)

学生活动:同桌研究讨论,并试着推导得出结论。

师生共同总结:(都是正整数)

教师把结论写在黑板上。

请同学们试着用文字概括这个性质:

同底数幂相乘底数不变、指数相加

运算形式运算方法

提出问题:当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?

学生活动:观察(都是正整数)

【教法说明】注意对学生从特殊到一般的认识方法的培养,揭示新规律时,强调学生的积极参与。

4.尝试反馈,理解新知

学生活动:学生在练习本上完成例1、例2,由2个学生板演完成之生,由学生判断板演是否正确。

教师活动:统计做题正确的人数,同时给予肯定或鼓励。

注意问题:例2(2)中第一个的指数是1,这是学生做题时易出问题之处。

【教法说明】学生在认识的基础上,尝试运用性质,加深对性质的理解。学生做题正确与否,教师均应以鼓励为主,增强学生学习的信心。

5.反馈练习,巩固知识

【教法说明】此组题旨在增强学生应变能力和解题灵活性。

(四)总结、扩展

学生活动:1.同底数幂相乘,底数_____________,指数____________.

2、由学生说出本节体会最深的是哪些?

【教学说明】在1中强调不变、相加。学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力。

《同底数幂的乘法》教学案例篇五

一、教材分析

同底数幂的乘法这节课要求学生推导出同底数幂的乘法的运算性质,理解和掌握性质的特点,熟练运用运算性质解决问题。在教学中改变以往单纯的模仿与记忆的模式,体现以学生为主体,引导学生动手实践,自主探索与合作交流的教学理念。通过练习形成良好的应用意识。

同底数幂的乘法是在学习了有理数的乘方和整式的加减之后,为了学习整式的乘法而学习的关于幂的一个基本性质,又是幂的三个性质中最基本的一个性质,学好了同底数幂的乘法,对其他两个性质以及整式乘法和除法的学习能形成正迁移。

因此,同底数幂的乘法性质既是有理数幂的乘法的推广,又是整式乘法和除法的学习的重要基础,在本章中具有举足轻重的地位和作用。

二、教学目标

(一)、知识技能

1、理解同知识技能底数幂的乘法法则

2、运用同底数幂的乘法法则解决一些实际问题

(二)、能力训练

1、在进一步体会幂的意义时,发展推理能力和有条理的表达能力

2、通过同底数幂的乘法法则的推导和应用,使学生领会特殊一般特殊的认知规律

(三)、情感价值

体味科学的思想方法,接受数学情感的熏陶,激发学生探究的兴趣

教学重点:正确理解同底数幂的乘法法则

教学难点:正确理解和应用同底数幂的乘法法则

教学手段:为了使性质的推导过程更形象和清晰,所以借助多媒体来进行教学。

三、教学方法分析

1、教法分析

根据教学目标,要让学生经历探索性质的过程,因此,在性质的推导过程,采用让学生尝试的教学方法,以问题的形式,引导学生进行思考,探索,再通过交流,讨论,发现性质,使学生的学习过程成为再发现,再创造的过程,使学生在学习的过程中掌握学习与研究的方法,养成良好的学习习惯,从而学会学习,学会思考,学会合作,学会创新;

对于推导出的性质及其语言叙述,则可以一种较轻松而又富有挑战性的方式指导他们理解记忆,在教学方法上采用学生讨论与教师的讲授相结合。而在整个教学中,分层次地渗透了归纳和演绎的数学思想方法,以培养学生养成良好的思维习惯。

2、学法指导

教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此,在教学中要不断指导学生学会学习。

本节课主要是教给学生动手做,动脑想,多合作,大胆猜,会验证的研讨式学习方法。这样做增加了学生的参与机会,增强了参与意识,教给了学生获取知识的途径和思考问题的方法,使学生真正成为学习的主体。以及通过动手实践,理解记忆和强化训练的学法掌握本节课内容。

四、教学过程

一、创设情景提出问题

运用多媒体投影引例,引导学生观察由问题而得到式子特点:105107=

二、探索交流发现新知

(一)、提出新任务:

思考:an表示的意义是什么其中a,n,an分别叫做什么

问题:1、25表示什么

2、1010101010可以写成什么形式

思考:1、式子103102的意义是什么

2、这个式子中的两个因式有何特点

3、a3a2=

过程中注意了解学生对幂的意义的理解程度,要求学生说明每一步的理由。

思考:请同学们观察下面各题左右两边,底数,指数有什么关系

103102=10()2322=2()a3a2=a()

(二)、提高任务难度:

引导学生观察计算前后底数和指数的关系,并鼓励其运用自己的语言加以描述。

猜想:aman=(当m,n都是正整数)

(三)、提出挑战:能否用一个比较简洁的式子概括出你所发现的规律

(四)、提出更高挑战:要求学生从幂的意义这个角度加以解释,说明,验证它的正确性。

然后要求学生按步骤自立思考和探索:

1、比一比:识记运算性质

2、回想一下你是用什么办法记住的用这个办法能否持久你能否提出一个更有建设性的改进措施

猜想:aman=(当m,n都是正整数)

对运算性质的剖析条件:①乘法②同底数幂

结果:①底数不变②指数相加(目的是为了化解难点)

3、再识记。在理解的基础上,结合性质的特点和语言叙述,有目的地提取记忆。

4、提问:你认为这个性质的应用,应特别注意什么

(五)、应用练习促进深化

1。计算:(1)107104;(2)(-x)2(-x)5。

2。计算:(1)232425(2)yy2y3

你能回答开始提出问题吗105107等于多少呢

练习设计:

巩固练习:1计算:(抢答)2计算:3。下面的计算对不对如果不对,怎样改正

变式训练:填空:

思考题:1。计算:2。填空:

五、提炼小结完善结构

通过本节课的学习,你在知识上有哪些收获,你学到了哪些方法引导学生自主总结,组织学生互相交流各自的收获与体会,成功与失败。

六、布置作业延伸学习

《同底数幂的乘法》教案篇六

教学目标

一、知识与技能

1、掌握同底数幂的乘法法则,并会用式子表示;

2、能利用同底数幂的乘法法则进行简单计算;

二、过程与方法

1、在探索性质的过程中让学生经历观察、猜想、创新、交流、验证、归纳总结的思维过程;

2、课堂中教给学生“动手做,动脑想,多合作,大胆猜,会验证”的研讨式学习方法;

三、情感态度和价值观

1、在活动中培养乐于探索、合作学习的习惯,培养“用数学”的意识和能力;

2、通过同底数幂乘法性质的推导和应用,使学生初步理解“特殊、一般、特殊”的认知规律

和辨证唯物主义思想,体会科学的思想方法,激发学生探索创新精神;

教学重点

同底数幂乘法法则;

教学难点

同底数幂的乘法法则的灵活运用;

教学方法

引导发现法、启发猜想、讲练结合法

课前准备

教师准备

课件、多媒体;

学生准备

练习本;

课时安排1课时

教学过程

一、导入

光在真空中的速度大约是3×108m/s.太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年。

一年以3×107秒计算,比邻星与地球的距离约为多少?

3×108×3×107×4.22=37.98×(108×107)。

108×107等于多少呢?

通过呈现实际问题引起学生的注意,对同底数幂的乘法内容具体,便于引导学生进入相关问题的思考。

二、新课

在乘方意义的基础上,学生开展探究,采用观察分析、探究归纳,合作学习的方法,易使学生体会知识的形成过程,从而突破难点,同时也培养了学生观察、概括与抽象的能力。

同步测试

1、求1+2+22+23+24+…+22023的值。

解:设S=1+2+22+23+24+…+22023+22023,将等式两边同时乘以2得:

2S=2+22+23+24+25+…+22023+22023

将下式减去上式得2S﹣S=22023﹣1

即S=22023﹣1

即1+2+22+23+24+…+22023=22023﹣1

请你仿照此法计算:

(1)1+2+22+23+24+…+210

(2)1+3+32+33+34+…+3n(其中n为正整数)。

课时练习含答案解析

1、下面计算正确的是()

A.b5·b5=2b5B.b5+b5=b10C.x5·x5=x25D.y5·y5=y10

答案:D

解析:解答:a项计算等于b10;B项计算等于2b5;C项计算等于x10;故D项正确。

分析:根据同底数幂的乘法法则可完成题。

《同底数幂的乘法》教案篇七

学习目标:

1、了解同底数幂的乘法性质

2、能推导同底数幂的运算性质的过程,并会运用这一性质进行计算

学习重点:同底数幂的乘法运算

学习难点:探索同底数幂的乘法性质的过程

学习过程:

1、学习准备

1、①什么叫乘方?

②中国奥委会为把2023年北京奥运会办成一个环保的奥运会想有效利用太阳能(如水立方),做了一个统计:一平方千米的土地上,一年内从太阳得到的能量相当于燃烧108千克煤所产生的能量。那么105平方千米的土地上,一年内从太阳得到的能量相当于燃烧多少千克煤?

2、观察思考

同底数幂相乘规律:(文字叙述)

(符号叙述)

规律条件:①②

规律结果:①②

3、阅读课本第47页例1,完成下面练习:

①下面的计算对不对?如果不对,应怎样改正?

()()

()()

(8)(9)(10)

(11)(12)(13)

归纳:

同底数幂相乘时,指数是相加的;

底数为负数时,先用同底数幂的乘法法则计算,最后确定结果的正负;

不能疏忽指数为1的情况;

公式中的a可为一个有理数、单项式或多项式(整体思想)

③据资料介绍:神舟六号载人飞船飞行的速度达到每秒7.9103米,在经过大约100小时的太空飞行,它的行程大约是多少米(结果保留3个有效数字)?

学习体会:

本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?

四、自我测试:

1、下列计算对吗?如果不对,应怎样改正?

(6)a2a3-a3a2=0

2、(1)x5()=x8(2)-xx3()=-x7

(3)xm()=x3m(4)aam+1+a2am=()

3、计算:

(1)7873(2)(-2)8(-2)7(3)aa3

(6)(7)(8)(a-b)2(a-b)

(9)(10)

4、1克水中水分子的个数大约3.341022个,请估计相同条件下103克水中含有水分子的个数(结果用科学记数法表示)。

思维拓展:

1、计算题:

(1)(a-b)(b-a)2;(2);(3)

(4)(5)

2、如果an-2an+1=a11,则n=。

3、已知:am=2,an=3.求am+n=

《同底数幂的乘法》教案篇八

§1.3同底数幂的乘法

●教学目标

(一)教学知识点

1、经历探索同底数幂的乘法运算性质的过程,进一步体会幂的意义。

2、了解同底数幂乘法的运算性质,并能解决一些实际问题。

(二)能力训练要求

1、在进一步体会幂的意义时,发展推理能力和有条理的表达能力。

2、学习同底幂乘法的运算性质,提高解决问题的能力。

(三)情感与价值观要求

在发展推理能力和有条理的表达能力的同时,体会学习数学的兴趣,培养学习数学的信心。

●教学重点

同底数幂的乘法运算法则及其应用。

●教学难点

同底数幂的乘法运算法则的灵活运用。

●教学方法

引导启发法

教师引导学生在回忆幂的意义的基础上,通过特例的推理,再到一般结论的推出,启发学生应用旧知识解决新问题,得出新结论,并能灵活运用。

●教具准备

小黑板

●教学过程

Ⅰ。创设问题情景,引入新课

[师]同学们还记得“an”的意义吗?

[生]an表示n个a相乘,我们把这种运算叫做乘方。乘方的结果叫幂,a叫做底数,n是指数。

[师]我们回忆了幂的意义后,下面看这一章最开始提出的问题(出示投影片§1.3A):

问题1:光的速度约为3×105千米/秒,太阳光照射到地球上大约需要5×102秒,地球距离太阳大约有多远?

问题2:光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需4.22年。一年以3×107秒计算,比邻星与地球的距离约为多少千米?

[生]根据距离=速度×时间,可得:

地球距离太阳的距离为:3×105×5×102=3×5×(105×102)(千米)

比邻星与地球的距离约为:3×105×3×107×4.22=37.98×(105×107)(千米)

[师]105×102,105×107如何计算呢?

[生]根据幂的意义:

105×102=×

=

=107

105×107

=

=

[师]很棒!我们观察105×102可以发现105、102这两个因数是同底的幂的形式,所以105×102我们把这种运算叫做同底数幂的乘法,105×107也是同底数幂的乘法。

由问题1和问题2不难看出,我们有必要研究和学习这样一种运算——同底数幂的乘法。

Ⅱ。学生通过做一做、议一议,推导出同底数幂的乘法的运算性质

1、做一做

计算下列各式:

(1)102×103;

(2)105×108;

(3)10m×10n(m,n都是正整数)

你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言加以描述。

(4)2m×2n等于什么?()m×()n呢,(m,n都是正整数)。

[师]根据幂的意义,同学们可以自立解决上述问题。

[生](1)102×103=(10×10)×(10×10×10)=105=102+3

因为102的意义表示两个10相乘;103的意义表示三个10相乘。根据乘方的意义5个10相乘就表示105同样道理,可求得:

(2)105×108

=1013=105+8

(3)10m×10n

=10m+n

从上面三个小题可以发现,底数都为10的幂相乘后的结果底数仍为10,指数为两个同底的幂的指数和。

[师]很好!底数不同10的同底的幂相乘后的结果如何呢?接着我们来利用幂的意义分析第(4)小题。

[生](4)2m×2n

=2m+n

()m×()n

=()m+n

我们可以发现底数相同的幂相乘的结果的底数和原来底数相同,指数是原来两个幂的指数的和。

2、议一议

出示投影片(§1.3C)

am?an等于什么(m,n都是正整数)?为什么?

[师生共析]am?an表示同底的幂的乘法,根据幂的意义,可得

am?an=?

==am+n

即有am?an=am+n(m,n都是正整数)

用语言来描述此性质,即为:

同底数幂相乘,底数不变,指数相加。

[师]同学们不妨再来深思,为什么同底数幂相乘,底数不变,指数相加呢?即为什么am?an=am+n呢?

[生]am表示m个a相乘,an表示n个a相乘,am?an表示m个a相乘再乘以n个a相乘,即有(m+n)个a相乘,根据乘方的意义可得am?an=am+n.

[师]也就是说同底数幂相乘,底数不变,指数要降低一级运算,变为相加。

Ⅲ。例题讲解

[例1]计算:

(1)(-3)7×(-3)6;(2)()3×();

(3)-x3?x5;(4)b2m?b2m+1.

[例2]用同底数幂乘法的性质计算投影片(§1.3A)中的问题1和问题2.

[师]我们先来看例1中的四个小题,是不是都能用同底数幂的乘法的性质呢?

[生](1)、(2)、(4)都能直接用同底数幂乘法的性质——底数不变,指数相加。

[生](3)也能用同底数幂乘法的性质。因为-x3?x5中的-x3相当于(-1)×x3,也就是说-x3的底数是x,x5的底数也为x,只要利用乘法结合律即可得出。

[师]下面我就叫四个同学板演。

[生]解:(1)(-3)7×(-3)6=(-3)7+6=(-3)13;

(2)()3×()=()3+1=()4;

(3)-x3?x5=[(-1)×x3]?x5=(-1)[x3?x5]=-x8;

(4)b2m?b2m+1=b2m+2m+1=b4m+1.

[师]我们接下来看例2.

[生]问题1中地球距离太阳大约为:

3×105×5×102

=15×107

=1.5×108(千米)

据测算,飞行这么远的距离,一架喷气式客机大约要20年。

问题2中比邻星与地球的距离约为:

3×105×3×107×4.22=37.98×1012=3.798×1013(千米)

想一想:am?an?ap等于什么?

[生]am?an?ap=(am?an)?ap=am+n?ap=am+n+p;

[生]am?an?ap=am?(an?ap)=am?an+p=am+n+p;

[生]am?an?ap=??=am+n+p.

Ⅳ。练习

1、随堂练习(课本P14):计算

(1)52×57;(2)7×73×72;(3)-x2?x3;(4)(-c)3?(-c)m.

解:(1)52×57=59;

(2)7×73×72=71+3+2=76;

(3)-x2?x3=-(x2?x3)=-x5;

(4)(-c)3?(-c)m=(-c)3+m.

2、补充练习:判断(正确的打“√”,错误的打“×”)

(1)x3?x5=x15()

(2)x?x3=x3()

(3)x3+x5=x8()

(4)x2?x2=2x4()

(5)(-x)2?(-x)3=(-x)5=-x5()

(6)a3?a2-a2?a3=0()

(7)a3?b5=(ab)8()

(8)y7+y7=y14()

解:(1)×。因为x3?x5是同底数幂的乘法,运算性质应是底数不变,指数相加,即x3?x5=x8.

(2)×。x?x3也是同底数幂的乘法,但切记x的指数是1,不是0,因此x?x3=x1+3=x4.

(3)×。x3+x5不是同底数幂的乘法,因此不能用同底数幂乘法的性质进行运算,同时x3+x5是两个单项式相加,x3和x5不是同类项,因此x3+x5不能再进行运算。

(4)×。x2?x2是同底数幂的乘法,直接用运算性质应为x2?x2=x2+2=x4.

(5)√。

(6)√。因为a3?a2-a2?a3=a5-a5=0.

(7)×。a3?b5中a3与b5这两个幂的底数不相同。

(8)×。y7+y7是整式的加法且y7与y7是同类项,因此应用合并同类项法则,得出y7+y7=2y7.

Ⅴ。课时小结

[师]这节课我们学习了同底数幂的乘法的运算性质,请同学们谈一下有何新的收获和体会呢?

[生]在探索同底数幂乘法的性质时,进一步体会了幂的意义。了解了同底数幂乘法的运算性质。

[生]同底数幂的乘法的运算性质是底数不变,指数相加。应用这个性质时,我觉得应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加。即am?an=am+n(m、n是正整数)。

Ⅵ。课后作业

课本习题1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论