版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
构造判断矩阵的讲解层次分析法第1页,课件共18页,创作于2023年2月建立判断矩阵例如:如果C为购一台满意的设备,P1为功能强,P2为价格低,P3为维修容易。通过对P1,P2和P3的两两比较后做出的判断矩阵P如下:P1P2P2P3P3P111/323151/21/51功能强价格低易维修衡量判断矩阵质量的标准是矩阵中的判断是否有满意的一致性,如果判断矩阵存在如下关系,则称判断矩阵具有完全一致性。bij=bik/bjk
为了考察AHP决策分析方法得出的结果是否基本合理,需要对判断矩阵进行一致性检验。
第2页,课件共18页,创作于2023年2月
设要比较各准则C1,C2,…,Cn对目标O的重要性A~成对比较阵A是正互反阵要由A确定C1,…,Cn对O的权向量选择旅游地目标层O(选择旅游地)准则层C3居住C1景色C2费用C4饮食C5旅途C1C2C3C4C5C1C2C3C4C5稍加分析就发现上述成对比较矩阵有问题第3页,课件共18页,创作于2023年2月层次单排序和一致性检验对判断矩阵求其相对应的特征向量W,即BW=λmax
W其中W的分量(W1,W2,···,Wn)就是对应于n个要素的相对重要度,即权重系数。计算权重系数的方法和积法方根法第4页,课件共18页,创作于2023年2月(1)和积法将判断矩阵的每一列元素做归一化处理:将归一化的判断矩阵按行相加:对向量
T归一化:
所得的即为所求得特征向量,亦即判断矩阵的层次单排序结果(即权重系数)T第5页,课件共18页,创作于2023年2月(二)一致性检验层次单排序和一致性检验定义
一致性指标C.I.为:一般情况下,若C.I.≤0.10,就认为判断矩阵具有一致性。据此而计算的值是可以接受的。显然,随着n的增加判断误差就会增加,因此判断一致性时应考虑到n的影响,使用随机性一致性比值C.R.=C.I./R.I.,其中R.I.为平均随机一致性指标。下表给出了500样本判断矩阵计算的平均随机一致性指标检验值。平均随机一致性指标第6页,课件共18页,创作于2023年2月基本概念
什么是权重(权系数)?注意,X1,X2,…,Xn中有的不是基数变量,而有可能是序数变量如舒适程度或积极性之类。小石块W1小石块Wn小石块W2…设想:把一块单位重量的石头砸成n块小石块
在决策问题中,通常要把变量Z表示成变量x1,x2,…,xn的线性组合:nnxwxwxwz+++=L2211
其中.则叫各因素对于目标Z的权重,
叫权向量.nwww,...,,211,01=>å=niiiwwTwnw2w1w),...,,(=第7页,课件共18页,创作于2023年2月利用判断矩阵计算各因素C对目标层Z的权重(权系数)b.对按行求和得:a.将A的每一列向量归一化得:c.将
归一化,即为近似特征根(权向量)d.计算,作为最大特征根的近似值。例:列向量归一化按行求和归一化úúúûùêêêëé268.0972.0760.1úúúûùêêêëé091.0077.01.0364.0308.03.0545.0615.06.0úúúûùêêêëé=14/16/1412/1621Aå==niiiwAwn1)(1lå==njijiww1~~å==niijijijaaw1/~w=úúúûùêêêëé089.0324.0587.0úúúûùêêêëé=268.0974.0769.1Aw009.3)089.0268.0324.0974.0587.0769.1(31=++=lTnniiiiwwwwwww),...,,(,~/~211==å=iw~ijw~得到排序结果:w=(0.588,0.322,0.090)T,
max=3.009第8页,课件共18页,创作于2023年2月2.层次单排序及其一致性检验
对应于判断矩阵最大特征根λmax的特征向量,经归一化(使向量中各元素之和等于1)后记为W。
W的元素为同一层次因素对于上一层次因素某因素相对重要性的排序权值,这一过程称为层次单排序。能否确认层次单排序,需要进行一致性检验,所谓一致性检验是指对A确定不一致的允许范围。
定理:n阶一致阵的唯一非零特征根为n定理:n
阶正互反阵A的最大特征根
n,当且仅当
=n时A为一致阵第9页,课件共18页,创作于2023年2月由于λ
连续的依赖于aij
,则λ
比n
大的越多,A的不一致性越严重。用最大特征值对应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。因而可以用λ-n
数值的大小来衡量A的不一致程度。定义一致性指标:CI=0,有完全的一致性CI接近于0,有满意的一致性CI越大,不一致越严重第10页,课件共18页,创作于2023年2月RI000.580.901.121.241.321.411.451.491.51
n1234567891110为衡量CI的大小,引入随机一致性指标RI。方法为Saaty的结果如下随机一致性指标RI则可得一致性指标随机构造500个成对比较矩阵第11页,课件共18页,创作于2023年2月一致性检验:利用一致性指标和一致性比率<0.1及随机一致性指标的数值表,对进行检验的过程。
一般,当一致性比率的不一致程度在容许范围之内,有满意的一致性,通过一致性检验。可用其归一化特征向量作为权向量,否则要重新构造成对比较矩阵A,对aij
加以调整。时,认为定义一致性比率:第12页,课件共18页,创作于2023年2月“选择旅游地”中准则层对目标的权向量及一致性检验准则层对目标的成对比较阵最大特征根
=5.073权向量(特征向量)w=(0.263,0.475,0.055,0.090,0.110)T一致性指标随机一致性指标RI=1.12(查表)一致性比率CR=0.018/1.12=0.016<0.1通过一致性检验第13页,课件共18页,创作于2023年2月层次总排序的一致性检验设层对上层(层)中因素的层次单排序一致性指标为,随机一致性指为,则层次总排序的一致性比率为:当时,认为层次总排序通过一致性检验。层次总排序具有满意的一致性,否则需要重新调整那些一致性比率高的判断矩阵的元素取值。
到此,根据最下层(决策层)的层次总排序做出最后决策。第14页,课件共18页,创作于2023年2月记第2层(准则)对第1层(目标)的权向量为同样求第3层(方案)对第2层每一元素(准则)的权向量方案层对C1(景色)的成对比较阵方案层对C2(费用)的成对比较阵…Cn…Bn最大特征根
1=3.005
2=3.002
…
5
=3.0权向量w1(3)w2(3)…
w5(3)
=(0.595,0.277,0.129)=(0.082,0.236,0.682)=(0.166,0.166,0.668)选择旅游地第15页,课件共18页,创作于2023年2月第3层对第2层的计算结果
w(2)
0.2630.5950.2770.1293.0050.0030.00100.00503.0020.6820.2360.0820.47530.1420.4290.4290.0553.0090.1750.1930.6330.09030.6680.1660.1660.110组合权向量RI=0.58(n=3),
CIk
均可通过一致性检验方案P1对目标的组合权重为0.5950.263+…=0.300方案层对目标的组合权向量为(0.300,0.246,0.456)T第16页,课件共18页,创作于2023年2月1.建立层次结构模型该结构图包括目标层,准则层,方案层。层次分析法的基本步骤归纳如下3.计算单排序权向量并做一致性检验2.构造成对比较矩阵从第二层开始用成对比较矩阵和1~9尺度。对每个成对比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年品牌授权代理合同2篇
- 军事院校教务主任招聘合同
- 交通运输桩基施工合同
- 2024版文化艺术品展览与交流合同
- 棒球场租赁合同模板
- 村委会农村垃圾处理合同
- 文化遗产保护与管理暂行办法
- 电影拍摄通讯设备租赁协议
- 2024年度农产品BB电商平台运营合同5篇
- 水利工程生态环境保护2024年度合同2篇
- 全国消防宣传月《全民消防、生命至上》专题讲座
- 第六单元(单元测试)-2024-2025学年统编版语文六年级上册
- 2023年12月英语四级真题及答案-第2套
- GB/T 21283.6-2015密封元件为热塑性材料的旋转轴唇形密封圈第6部分:热塑性材料与弹性体包覆材料的性能要求
- 血氧饱和度监测操作流程
- 同轴度的测量与调整
- 层次分析法案例与步骤
- 雾在哪里教学反思范文(精选5篇)
- 尾矿及弃渣整治方案
- 集团人力资源三年规划项目分解表
- 海南地区瓜果蔬菜季节种植一览表
评论
0/150
提交评论