控制系统的数学描述与建模_第1页
控制系统的数学描述与建模_第2页
控制系统的数学描述与建模_第3页
控制系统的数学描述与建模_第4页
控制系统的数学描述与建模_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

控制系统的数学描述与建模MATLAB技术应用控制系统的数学描述与建模控制系统的数学模型在控制系统的研究中有着相当重要的地位,要对系统进行仿真处理,首先应当知道系统的数学模型,然后才可以对系统进行模拟。同样,如果知道了系统的模型,才可以在此基础上设计一个合适的控制器,使得系统响应达到预期的效果,从而符合工程实际的需要。在线性系统理论中,一般常用的数学模型形式有:传递函数模型(系统的外部模型)、状态方程模型(系统的内部模型)、零极点增益模型和部分分式模型等。这些模型之间都有着内在的联系,可以相互进行转换。系统的分类按系统性能分:线性系统和非线性系统;连续系统和离散系统;定常系统和时变系统;确定系统和不确定系统。线性连续系统:用线性微分方程式来描述,如果微分方程的系数为常数,则为定常系统;如果系数随时间而变化,则为时变系统。今后我们所讨论的系统主要以线性定常连续系统为主。线性定常离散系统:离散系统指系统的某处或多处的信号为脉冲序列或数码形式。这类系统用差分方程来描述。非线性系统:系统中有一个元部件的输入输出特性为非线性的系统。线性定常连续系统的微分方程模型微分方程是控制系统模型的基础,一般来讲,利用机械学、电学、力学等物理规律,便可以得到控制系统的动态方程,这些方程对于线性定常连续系统而言是一种常系数的线性微分方程。如果已知输入量及变量的初始条件,对微分方程进行求解,就可以得到系统输出量的表达式,并由此对系统进行性能分析。通过拉氏变换和反变换,可以得到线性定常系统的解析解,这种方法通常只适用于常系数的线性微分方程,解析解是精确的,然而通常寻找解析解是困难的。MATLAB提供了ode23、ode45等微分方程的数值解法函数,不仅适用于线性定常系统,也适用于非线性及时变系统。电路图如图,R=1.4欧,L=2亨,C=0.32法,初始状态:电感电流为零,电容电压为0.5V,t=0时刻接入1V的电压,求0<t<15s时,i(t),vo(t)的值,并且画出电流与电容电压的关系曲线。传递函数描述对线性定常系统,式中s的系数均为常数,且a1不等于零,这时系统在MATLAB中可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num和den表示。

num=[b1,b2,…,bm,bm+1] den=[a1,a2,…,an,an+1]

注意:它们都是按s的降幂进行排列的。连续系统的传递函数模型连续系统的传递函数如下:传递函数MATLAB中创建传递函数(TF)对象创建两个行向量,按降阶顺序分别包含分子和分母多项式中s各次幂的系数使用tf命令建立TF对象例如:>>numG=[43];denG=[165];>>G1=tf(numG,denG)或>>G1=tf([43],[156])零极点增益模型零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。在MATLAB中零极点增益模型用[z,p,K]矢量组表示。即:z=[z1,z2,…,zm]p=[p1,p2,...,pn]K=[k]函数tf2zp()可以用来求传递函数的零极点和增益。K为系统增益,zi为零点,pj为极点零极点增益模型零点、极点、增益形式(ZPK)表示输入零点和极点列向量及标量形式的增益使用zpk命令建立ZPK对象例:>>zG=-0.75;pG=[-1;-5];kG=4;>>G2=zpk(zG,pG,kG)

或者:>>G2=zpk(-0.75,[-1;-5],4)传递函数两种形式互换TF形式变换为ZPK形式

Gzpk=zpk(Gtf)[zz,pp,kk]=zpkdata(Gzpk,’v’)%获得G(s)的零点、极点和增益ZPK形式变换为TF形式Svv=tf(Sxx)[nn,dd]=tfdata(Svv,’v’)%获得分子分母多项式系数部分分式展开控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控制单元的和的形式。[resG,polG,otherG]=residue(numG,denG)resG留数

polG极点

otherG

常数函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微分单元的形式。向量b和a是按s的降幂排列的多项式系数。部分分式展开后,余数返回到向量r,极点返回到列向量p,常数项返回到k。[b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。举例:传递函数描述1)》num=[12,24,0,20];den=[24622];2)借助多项式乘法函数conv来处理:》num=4*conv([1,2],conv([1,6,6],[1,6,6]));》den=conv([1,0],conv([1,1],conv([1,1],conv([1,1],[1,3,2,5]))));零极点增益模型:》num=[1,11,30,0];》den=[1,9,45,87,50];[z,p,k]=tf2zp(num,den)》z=0-6-5p=-3.0000+4.0000i-3.0000-4.0000i-2.0000-1.0000k=1结果表达式:部分分式展开:》num=[2,0,9,1];》den=[1,1,4,4];[r,p,k]=residue(num,den)》p=0.0000+2.0000i0.0000-2.0000i-1.0000k=2r=0.0000-0.2500i0.0000+0.2500i-2.0000结果表达式:状态空间描述状态方程与输出方程的组合称为状态空间表达式,又称为动态方程,经典控制理论用传递函数将输入—输出关系表达出来,而现代控制理论则用状态方程和输出方程来表达输入—输出关系,揭示了系统内部状态对系统性能的影响。在MATLAB中,系统状态空间用(A,B,C,D)矩阵组表示。举例系统为一个两输入两输出系统:》A=[16910;31268;47911;5121314];》B=[46;24;22;10];》C=[0021;8022];》D=zeros(2,2);模型的转换与连接在一些场合下需要用到某种模型,而在另外一些场合下可能需要另外的模型,这就需要进行模型的转换。模型转换的函数包括:residue:传递函数模型与部分分式模型互换ss2tf:状态空间模型转换为传递函数模型ss2zp:状态空间模型转换为零极点增益模型tf2ss:传递函数模型转换为状态空间模型tf2zp:传递函数模型转换为零极点增益模型zp2ss:零极点增益模型转换为状态空间模型zp2tf:零极点增益模型转换为传递函数模型

模型的转换用法举例已知系统状态空间模型为:》A=[01;-1-2];B=[0;1];》C=[1,3];D=[1];》[num,den]=ss2tf(A,B,C,D,iu)

%iu用来指定第n个输入,当只有一个输入时可忽略。》num=152;den=121;》[z,p,k]=ss2zp(A,B,C,D,iu)》z=-4.5616p=-1k=1-0.4384-1已知一个单输入三输出系统的传递函数模型为:》num=[00-2;0-1-5;120];den=[16116];》[A,B,C,D]=tf2ss(num,den)》A=-6-11-6B=1C=00-2D=010000-1-5001001200系统的零极点增益模型:》z=[-3];p=[-1,-2,-5];k=6;》[num,den]=zp2tf(z,p,k)》num=00618den=181710》[a,b,c,d]=zp2ss(z,p,k)》a=-1.000000

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论