![高中数学椭圆及其标准方程课件_第1页](http://file4.renrendoc.com/view/5e6656a3426a02fbf74deb2502a0b589/5e6656a3426a02fbf74deb2502a0b5891.gif)
![高中数学椭圆及其标准方程课件_第2页](http://file4.renrendoc.com/view/5e6656a3426a02fbf74deb2502a0b589/5e6656a3426a02fbf74deb2502a0b5892.gif)
![高中数学椭圆及其标准方程课件_第3页](http://file4.renrendoc.com/view/5e6656a3426a02fbf74deb2502a0b589/5e6656a3426a02fbf74deb2502a0b5893.gif)
![高中数学椭圆及其标准方程课件_第4页](http://file4.renrendoc.com/view/5e6656a3426a02fbf74deb2502a0b589/5e6656a3426a02fbf74deb2502a0b5894.gif)
![高中数学椭圆及其标准方程课件_第5页](http://file4.renrendoc.com/view/5e6656a3426a02fbf74deb2502a0b589/5e6656a3426a02fbf74deb2502a0b5895.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§2.2.1椭圆及其标准方程§2.2.1椭圆及其标准方程
改变圆定义中的某些条件,问动点的轨迹是什么?
平面内到一定点的距离为定长的点的轨迹是圆.
回顾旧知:取一条定长的细绳,把它的两端都固定在图板的同一点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖(动点)画出的轨迹是什么图形?圆的定义:一、回顾旧知,类比猜想符号表述:MO类比猜想:改变圆定义中的某M
活动1:取一条定长的细绳,把细绳的两端拉开一段距离,分别固定在图板的两点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?二、动手实验,亲身体会
问题1:
在运动过程中,哪些量没有变?哪些量改变了?你能说出动点满足的条件吗?问题2:结合实验,请同学们思考:什么叫椭圆?动点到两个定点的距离之和等于常数,且常数大于两个定点的距离.F1F2椭圆的生成方式M活动1:取一条定长的细绳,把细绳的符号表述:三、交流展示、形成概念
文字表述:MF1F2
这两个定点叫做椭圆的焦点,两焦点之间的距离叫做焦距.1.椭圆的定义定义解读:(1)在平面内;(3)绳长---轨迹上任意点到两定点距离和确定.(常记作2a,且2a>2c)(2)两个定点---两点间距离确定;(常记作2c)
平面内到两个定点的距离之和等于常数(大于)的点的轨迹叫做椭圆.符号表述:三、交流展示、形成概念文字表述:MF1F2四、合作探究、推导方程MF1F22c问题3:如何求椭圆的方程?求曲线方程的一般步骤:建系设点列式化简四、合作探究、推导方程MF1F22c问题3:如何求椭圆的活动2:观察椭圆的形状,你认为怎样建立直角坐标系?五、合作探究、推导方程活动2:观察椭圆的形状,你认为怎样建立直角坐标系?方案一五、合作探究、推导方程设点---列式---由椭圆定义得:建系--如图,以经过椭圆两焦点,的直线为轴,线段的垂直平分线为轴,建立直角坐标系
.设是椭圆上任意一点,椭圆的焦距为,与的距离和等于,则.活动3:怎样化简呢?方案一五、合作探究、推导方程设点---列式---由椭圆定义得PF1F2Oxy问题4:观察下图,你能从中找出表示的线段吗?五、合作探究、推导方程PF1F2Oxy问题4:观察下图,你能从中找出表示1oFyx2FM问题5:方案二中的椭圆方程又是什么呢?2.椭圆的标准方程五、合作探究、推导方程焦点在轴焦点在轴方案二1oFyx2FM问题5:方案二中的椭圆方程又是什么呢(1)椭圆标准方程对应的椭圆中心在原点,焦点在坐标轴上;六、归纳概括、提炼特征问题6:椭圆的标准方程有什么特征?(4)椭圆焦点的位置由标准方程中分母的大小确定.(2)椭圆标准方程形式:左边是两个分式的平方和,右边是1;(3)椭圆标准方程中a,b的关系:(1)椭圆标准方程对应的椭圆中心在原点,焦点在坐标轴上;六、七、初步运用、强化理解例1:已知椭圆的两个焦点坐标为,并且经过点
求它的标准方程.七、初步运用、强化理解例1:已知椭圆的两个焦点坐标为,并且经八、自我评价、反馈提高14B活动4:请同学们完成下面的练习,看谁做得又快又准确?上一点到焦点的距离等于,则点到另一个焦点的距离是
.练习2.椭圆练习1.动点P到定点的距离的和是,则动点的轨迹为()
A椭圆B线段C直线D不能确定八、自我评价、反馈提高14B活动4:请同学们完成下面的练习,九、归纳总结、提炼升华一个概念:求美意识、求简意识、猜想意识两种方程:三个意识:这节课你有什么收获呢?九、归纳总结、提炼升华一个概念:求美意识、求简意识、猜想意识将推导椭圆方程过程中得到的方程变形为后观察式子的几何意义,提出合理猜想.十、布置作业、延伸课堂1.作业1.课本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋买卖合同协议书范本下载
- 直播劳务的合同
- 图书销售合同
- 商铺转让租赁合同范本
- 提高团队协作能力的技能培训课程
- 鱼种产品购销合同书样本年
- 2025合同模板修缮修理合同范本
- 隧洞施工合同范本
- 装修房屋托管合同范本
- 购房协议合同
- 五年级数学(小数乘除法)计算题专项练习及答案汇编
- 2024年苏州农业职业技术学院高职单招语文历年参考题库含答案解析
- 人美版初中美术知识点汇总九年级全册
- 2022中和北美腰椎间盘突出症诊疗指南的对比(全文)
- 深度学习视角下幼儿科学探究活动设计
- 乳房整形知情同意书
- 全国核技术利用辐射安全申报系统填报指南
- GB/T 18344-2016汽车维护、检测、诊断技术规范
- 青岛版科学(2017)六三制六年级下册第2单元《生物与环境》全单元课件
- 2022-2023年人教版九年级物理上册期末考试(真题)
- 关汉卿的生平与创作
评论
0/150
提交评论