四川省资阳市太平中学高二数学理联考试题含解析_第1页
四川省资阳市太平中学高二数学理联考试题含解析_第2页
四川省资阳市太平中学高二数学理联考试题含解析_第3页
四川省资阳市太平中学高二数学理联考试题含解析_第4页
四川省资阳市太平中学高二数学理联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省资阳市太平中学高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设a、b是两条不同的直线,α、β是两个不同的平面,则下面四个命题中不正确的是()A.若a⊥b,a⊥α,b?α,则b∥α B.若a⊥b,a⊥α,b⊥β,则α⊥βC.若a∥α,α⊥β,则α⊥β D.若a⊥β,α⊥β,则a∥α参考答案:D【分析】在A中,由线面平行的判定定理得b∥α;在B中,由面面垂直的判定定理得α⊥β;在C中,由面面垂直的判定定理得α⊥β;在D中,a∥α或a?α.【解答】解:由a、b是两条不同的直线,α、β是两个不同的平面,知:在A中,若a⊥b,a⊥α,b?α,则由线面平行的判定定理得b∥α,故A正确;在B中,若a⊥b,a⊥α,b⊥β,则由面面垂直的判定定理得α⊥β,故B正确;在C中,若a∥α,α⊥β,则由面面垂直的判定定理得α⊥β,故C正确;在D中,若a⊥β,α⊥β,则a∥α或a?α,故D错误.故选:D.2.设m,n是不同的直线,α,β,γ是不同的平面,有以下四个命题:①②③④其中,真命题是()A.①④ B.②③ C.①③ D.②④参考答案:C【考点】命题的真假判断与应用;平面的基本性质及推论.【分析】对每一选支进行逐一判定,不正确的只需取出反例,正确的证明一下即可.【解答】解:对于①利用平面与平面平行的性质定理可证α∥β,α∥γ,则β∥γ,正确对于②面BD⊥面D1C,A1B1∥面BD,此时A1B1∥面D1C,不正确对应③∵m∥β∴β内有一直线与m平行,而m⊥α,根据面面垂直的判定定理可知α⊥β,故正确对应④m有可能在平面α内,故不正确,故选C3.

参考答案:C略4.m,n表示两条不同直线,α,β,γ表示平面,下列说法正确的个数是()①若α∩β=m,α∩γ=n,且m∥n,则β∥γ;②若m,n相交且都在α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β;③若α∩β=l,m∥α,m∥β,n∥α,n∥β,则m∥n;④若m∥α,n∥α,则m∥n.A.0个 B.1个 C.2个 D.3个参考答案:C【考点】空间中直线与平面之间的位置关系.【分析】①例如三棱柱即可判断①;②运用面面垂直的判定和性质定理,即可判断②;③运用线面平行的性质定理,即可判断m,n的位置关系;④运用线面平行定理,即可判断④.【解答】解:由题意,m,n是两条不同的直线,α,β,γ是三个不同的平面对于①,例如三棱柱,则不能得到β∥γ,故不正确,对于②,m,n相交且都在α,β外,由m∥α,n∥α,得到m,n所在的平面∥α,由m∥β,n∥β,则得到m,n所在的平面∥β,∴α∥β;故正确.对于③由α∩β=l,m∥α,m∥β,则m∥l,由n∥α,n∥β,则n∥l,则m∥n,故正确,对于④m∥α,n∥α,则m∥n或m与n相交或异面,故不正确故选C.【点评】本题主要考查空间直线与平面的位置关系,考查线面平行和性质定理,考查面面平行和性质定理的运用,是一道基础题.5.下列全称命题为真命题的是A.所有被3整除的数都是奇数 B.C.无理数的平方都是有理数

D.所有的平行向量都相等参考答案:B6.三棱锥P﹣ABC中,PA⊥平面ABC,AC⊥BC,AC=BC=1,PA=,则该三棱锥外接球的表面积为()A.5π B. C.20π D.4π参考答案:A【考点】LG:球的体积和表面积.【分析】根据题意,证出BC⊥平面PAC,PB是三棱锥P﹣ABC的外接球直径.利用勾股定理结合题中数据算出PB=,得外接球半径R=,从而得到所求外接球的表面积【解答】解:PA⊥平面ABC,AC⊥BC,∴BC⊥平面PAC,PB是三棱锥P﹣ABC的外接球直径;∵Rt△PBA中,AB=,PA=∴PB=,可得外接球半径R=PB=∴外接球的表面积S=4πR2=5π故选A.【点评】本题在特殊三棱锥中求外接球的表面积,着重考查了线面垂直的判定与性质、勾股定理和球的表面积公式等知识,属于中档题.7.(

)A. B.2 C. D.参考答案:A【分析】将定积分分为前后两部分,前面部分奇函数积分为0,后面部分转换为半圆,相加得到答案.【详解】【点睛】本题考查了定积分计算的两个方法,意在考查学生的计算能力和转化能力.8.下列说法错误的是()A.命题“若x2-4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2-4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.若p且q为假命题,则p、q均为假命题D.命题p:“?x0∈R使得x+x0+1<0”,则p:“?x∈R,均有x2+x+1≥0”参考答案:C9.下列说法正确的是(

)A.在统计学中,回归分析是检验两个分类变量是否有关系的一种统计方法

B.线性回归方程对应的直线至少经过其样本数据点中的,,一个点C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,相关指数R2为0.98的模型比相关指数R2为0.80的模型拟合的效果差参考答案:C对于A,统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法,所以A错;对于B,线性回归方程对应的直线可能不过任何一个样本数据点,所以B错误;对于C,残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高,所以C正确;对于D,回归分析中,相关指数为的模型比相关指数为的模型拟合的效果好,所以D错误.故选C.

10.设数列的前n项和,则的值为(A)15

(B)

16

(C)

49

(D)64参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知复数z满足z?(i﹣i2)=1+i3,其中i为虚数单位,则z=

.参考答案:﹣i【考点】A5:复数代数形式的乘除运算.【分析】由z?(i﹣i2)=1+i3,得,然后利用复数代数形式的乘除运算化简即可得答案.【解答】解:由z?(i﹣i2)=1+i3,得=,故答案为:﹣i.12.函数在点处的切线与函数在点处切线平行,则直线的斜率是

参考答案:略13.已知=(1-t,1-t,t),=(2,t,t),则|-|的最小值为___________。参考答案:14.平面α经过三点A(-1,0,1),B(1,1,2),C(2,-1,0),则平面α的法向量可以是___________.(写出一个即可)参考答案:(或与共线也可)略15.已知函数,则f(f(3))=

.参考答案:﹣1【考点】3T:函数的值.【分析】由已知得f(3)=log22=1,从而f(f(3))=f(1),由此能求出结果.【解答】解:∵函数,∴f(3)=log22=1,f(f(3))=f(1)=1﹣2=﹣1.故答案为:﹣1.16.给出4个命题:(1)设椭圆长轴长度为,椭圆上的一点P到一个焦点的距离是,P到一条准线的距离是则此椭圆的离心率为(2)若椭圆(,且为正的常数)的准线上任意一点到两焦点的距离分别为,则为定值.(3)如果平面内动点M到定直线的距离与M到定点F的距离之比大于1,那么动点M的轨迹是双曲线.(4)过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在抛物线准线上的射影分别为A1、B1,则FA1⊥FB1.其中正确命题的序号依次是

.(把你认为正确的命题序号都填上)参考答案:(2)(4)略17.计算:

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC;(2)求点A到平面PBC的距离.参考答案:(1)证明:∵PD⊥平面ABCD,BC平面ABCD,∴PD⊥BC.由∠BCD=90°,得CD⊥BC.又PD∩DC=D,PD,DC平面PCD,∴BC⊥平面PCD.∵PC平面PCD,故PC⊥BC.-------------------4分

(2)解:(方法一)分别取AB,PC的中点E,F,连DE,DF,则易证DE∥CB,DE∥平面PBC,点D,E到平面PBC的距离相等.又点A到平面PBC的距离等于点E到平面PBC的距离的2倍,由(1)知,BC⊥平面PCD,∴平面PBC⊥平面PCD.∵PD=DC,PF=FC,∴DF⊥PC.又∴平面PBC∩平面PCD=PC,∴DF⊥平面PBC于F.易知DF=,故点A到平面PBC的距离等于.--12分

(方法二):连接AC,设点A到平面PBC的距离为h.∵AB∥DC,∠BCD=90°,∴∠ABC=90°.由AB=2,BC=1,得△ABC的面积S△ABC=1.由PD⊥平面ABCD,及PD=1,得三棱锥P-ABC的体积V=S△ABC·PD=.∵PD⊥平面ABCD,DC平面ABCD,∴PD⊥DC.又∴PD=DC=1,∴PC==.由PC⊥BC,BC=1,得△PBC的面积S△PBC=.∵VA-PBC=VP-ABC,∴S△PBC·h=V=,得h=.故点A到平面PBC的距离等于.----------12分19.已知是边长为的正方形的中心,点、分别是、的中点,沿对角线把正方形折成直二面角;(Ⅰ)求的大小;(Ⅱ)求二面角的余弦值;(Ⅲ)求点到面的距离.

参考答案:(Ⅰ)以O点为原点,以的方向为轴的正方向,建立如图所示的坐标系,则,,,,,

……4分(Ⅱ)设平面EOF的法向量为,则,即,令,则,得,又平面FOA的法向量为,,二面角E-OF-A的余弦值为.

……9分(Ⅲ),∴点D到平面EOF的距离为.

……12分

20.求由抛物线y2=8x(y>0)与直线x+y﹣6=0及y=0所围成图形的面积.参考答案:【考点】定积分在求面积中的应用.【分析】根据定积分的定义结合图象可得,,然后利用定积分的定义进行计算.【解答】解:设所求图形面积为S,===21.已知函数.(1)求曲线在点(-1,-3)处的切线方程.(2)当时,证明:(i);(ii)若,则.参考答案:(1)(2)(ⅰ)详见解析(ⅱ)详见解析【分析】(1)利用导数的几何意义求曲线在点处的切线方程;(2)(i)设函数,再利用导数求=0,不等式即得证;(ii)设函数,再证明,不等式即得证.【详解】(1)解:,则,故所求切线方程为,即.(2)证明:(i)设函数,则.当时,;当时,从而,则,即.(ii)设函数,.设函数,,因为,所以,所以对恒成立,则在上单调递增,从而.因为,且的两根为,所以,则.从而对恒成立,则在上单调递增,所以,从而.【点睛】本题主要考查导数的几何意义,考查利用导数证明不等式,考查函数的最值、单调性的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.22.已知椭圆的中心在原点,一个顶点坐标为A(0,-1),焦点在x轴上.若右焦点到直线x-y+2=0的距离为3.

(1)求椭圆的方程

(2)设直线y=kx+m(k≠0)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论