版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州市高邮车逻中学高一数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.以下元素的全体不能够构成集合的是
A.中国古代四大发明
B.地球上的小河流C.方程的实数解
D.周长为10cm的三角形参考答案:B2.若,且,则角的终边所在象限是(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:D略3.已知函数的最小正周期为,为了得到函数的图象,只要将的图象
A向左平移个单位长度
B向右平移个单位长度
C向左平移个单位长度
D向右平移个单位长度参考答案:解析:由题知,所以,故选择A。4.函数的值域是
(
)A.
B.
C.
D.参考答案:C5.已知是直线上的动点,是圆的切线,是切点,是圆心,那么四边形面积的最小值是(
)A.
B.
C.
D.参考答案:C6.(5分)为了得到的图象,只需要将() A. 向左平移个单位 B. 向右平移个单位 C. 向左平移个单位 D. 向右平移个单位参考答案:D考点: 函数y=Asin(ωx+φ)的图象变换.专题: 三角函数的图像与性质.分析: 由于把函数的图象向右平移个单位,可得的图象,从而得出结论解答: ∵函数sin2(x+),函数=sin2(x﹣),故把函数的图象向右平移=个单位,可得y=sin=的图象,故选:D.点评: 本题主要考查函数y=Asin(ωx+?)的图象变换规律,左加右减,属于中档题.7.(5分)①正相关,②负相关,③不相关,则下列散点图分别反映的变量是() A. ①②③ B. ②③① C. ②①③ D. ①③②参考答案:D考点: 散点图.专题: 计算题;概率与统计.分析: 由图分析得到正负相关即可.解答: 第一个图大体趋势从左向右上升,故正相关,第二个图不相关,第三个图大体趋势从左向右下降,故负相关,故选D.点评: 本题考查了变量相关关系的判断,属于基础题.8.在区间(0,2)上随机地取出两个数x,y,满足的概率为,则实数k=(
)A.2 B.4 C. D.参考答案:D【分析】根据题意作出平面区域,结合与面积有关的几何概型,即可求出结果.【详解】在区间上随机地取出两个数,则对应的区域为边长为2的正方形区域,其面积为;在正方形区域内作出所表示的图像如下:阴影部分所表示区域,即为所表示区域;由得,因此阴影部分面积为,因为在区间上随机地取出两个数,满足概率为,所以,解得.故选D【点睛】本题主要考查与面积有关的几何概型,熟记概率计算公式即可,属于常考题型.9.如图,为互相垂直的单位向量,向量可表示为()A.2 B.3 C.2 D.3参考答案:C【考点】98:向量的加法及其几何意义.【分析】观察图形知:,=,,由此能求出.【解答】解:观察图形知:,=,,∴=()+()+()=.故选C.10.已知两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其定义如下表x123
x123f(x)231
g(x)132填写下列f[g(x)]的表格,其中三个数依次为x123f[g(x)]
A.2,1,3
B.1,2,3
C.3,2,1
D.1,3,2参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知钝角△ABC的三边a=k,b=k+2,c=k+4,求k的取值范围
.参考答案:(2,6)【考点】HR:余弦定理.【分析】根据余弦定理以及C为钝角,建立关于k的不等式,解之可得﹣2<k<6,再根据n为整数和构成三角形的条件,不难得出本题答案.【解答】解:由题意,得c是最大边,即C是钝角∴由余弦定理,得(k+4)2=(k+2)2+k2﹣2k(k+2)?cosC>=(k+2)2+k2即(k+2)2+k2<(k+4)2,解之得﹣2<k<6,∵a+b>c,∴k+(k+2)>k+4,解之得k>2综上所述,得k的取值范围是(2,6)故答案为:(2,6)【点评】本题给出钝角三角形的三边满足的条件,求参数k的取值范围,着重考查了利用余弦定理解三角形和不等式的解法等知识,属于基础题.12.已知函数,则的值为
▲
.参考答案:-4由题意得.
13.已知,那么等于__________________.参考答案:14.参考答案:略15.如图甲是第七届国际数学教育大会(简称)的会徽图案,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中,如果把图乙中的直角三角形继续作下去,记的长度构成数列{an},则此数列的通项公式为an=_____.参考答案:【分析】由图可知,由勾股定理可得,利用等差数列的通项公式求解即可.【详解】根据图形,因为都是直角三角形,,是以1为首项,以1为公差的等差数列,,,故答案为.【点睛】本题主要考查归纳推理的应用,等差数列的定义与通项公式,以及数形结合思想的应用,意在考查综合应用所学知识解答问题的能力,属于与中档题.16.(2016秋?建邺区校级期中)若函数f(x)=(a﹣1)x在(﹣∞,+∞)上单调递增,则实数a的取值范围是
.参考答案:(2,+∞)【考点】指数函数的图象与性质.【专题】函数思想;转化法;函数的性质及应用.【分析】根据指数函数的单调性求出a的范围即可.【解答】解:若函数f(x)=(a﹣1)x在(﹣∞,+∞)上单调递增,则a﹣1>1,解得:a>2,故答案为:(2,+∞).【点评】本题考查了指数函数的性质,考查函数的单调性问题,是一道基础题.17.若||=||=|﹣|=1,则|+|=.参考答案:【考点】9R:平面向量数量积的运算.【分析】首先,根据条件得到,然后,根据向量的模的计算公式求解.【解答】解:∵||=||=|﹣|=1,∴,∴|+|=,∴|+|=,故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分12分)在中,内角的对边分别为,且(Ⅰ)求的值;(Ⅱ)若,求的取值范围;(Ⅲ)若,求的取值范围.参考答案:(Ⅰ)因为:所以:展开后得:故=,即.............................4分(II)由,得外接圆直径,且点在优弧上任意运动.由图:于点,设有向线段长为,则=由图可知:,故
....................................................8分(III)设线段中点为D,由图可知由极化恒等式:==所以:
.........................................12分21.(本小题满分10分)已知=,=,=,设是直线上一点,是坐标原点⑴求使取最小值时的;
⑵对(1)中的点,求的余弦值.参考答案:21.(1)设,则,由题意可知
又.所以即,所以,则,当时,取得最小值,此时,即.(2)因为.略20.已知函数是奇函数,f(x)=lg(10x+1)+bx是偶函数.(1)求a和b的值.(2)说明函数g(x)的单调性;若对任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求实数k的取值范围.(3)设,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求实数a的取值范围.参考答案:【考点】函数恒成立问题;函数单调性的判断与证明;函数奇偶性的性质.【分析】(1)由函数是奇函数,f(x)=lg(10x+1)+bx是偶函数,可得g(0)=0,f(﹣1)=f(1),进而可得a和b的值.(2)g(x)在(﹣∞,+∞)单调递增,且g(x)为奇函数.若g(t2﹣2t)+g(2t2﹣k)>0恒成立,则3t2﹣2t>k,t∈[0,+∞)恒成立,令F(x)=3t2﹣2t,求其最值,可得答案;(3)h(x)=lg(10x+1),若存在x∈(﹣∞,1],使不等式g(x)>lg(10a+10)成立,则,解得答案.【解答】解:(1)由g(0)=0得,a=1,则,经检验g(x)是奇函数,故a=1,由f(﹣1)=f(1)得,则,故,经检验f(x)是偶函数∴a=1,…(2)∵,且g(x)在(﹣∞,+∞)单调递增,且g(x)为奇函数.∴由g(t2﹣2t)+g(2t2﹣k)>0恒成立,得g(t2﹣2t)>﹣g(2t2﹣k)=g(﹣2t2+k),∴t2﹣2t>﹣2t2+k,t∈[0,+∞)恒成立即3t2﹣2t>k,t∈[0,+∞)恒成立令F(x)=3t2﹣2t,在[0,+∞)的最小值为∴…(3)h(x)=lg(10x+1),h(lg(10a+9))=lg[10lg(10a+9)+1]=lg(10a+10)则由已知得,存在x∈(﹣∞,1],使不等式g(x)>lg(10a+10)成立,而g(x)在(﹣∞,1]单增,∴∴∴又又∵∴∴…21.已知正项数列{an}的前n项和为Sn,满足,且.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设,记数列{bn}的前n项和为Tn,求证:.参考答案:解:(Ⅰ),两式相减得,
是正项数列,,即从第二项起为等差数列,且公差为1,
又当时,,解得(舍去),从而,
(Ⅱ),
.依次代入,各式相加得
22.已知全集U={x|﹣6≤x≤5},M={x|﹣3≤x≤2},N={x|0<x<2}.(Ⅰ)求M∪N;(Ⅱ)求?U(M∩N).参考答案:【考点】交、并、补集的混合运算;并集及其运算.【专题】对应思想;定义
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石河子大学《药剂学》2022-2023学年第一学期期末试卷
- 石河子大学《实验诊断学》2021-2022学年第一学期期末试卷
- 石河子大学《计算机辅助绘图》2022-2023学年第一学期期末试卷
- 沈阳理工大学《专业创新课程-仪器仪表生产与创新》2022-2023学年第一学期期末试卷
- 沈阳理工大学《信号与系统》2022-2023学年第一学期期末试卷
- 沈阳理工大学《人机工程学》2022-2023学年第一学期期末试卷
- 沈阳理工大学《建筑构造》2022-2023学年第一学期期末试卷
- 沈阳理工大学《光学设计》2022-2023学年第一学期期末试卷
- 沈阳理工大学《材料磨损与抗磨材料》2023-2024学年第一学期期末试卷
- 合同操作性条款
- 学校校园欺凌师生访谈记录表六篇
- 2023年度军队文职《教育学》真题库(含答案)
- 耳鼻喉科手术分级目录2022
- 课后习题答案-电机与拖动-刘锦波
- 急混合细胞白血病
- GB/T 11836-2023混凝土和钢筋混凝土排水管
- 烟花爆竹生产企业2023安全生产费用投入计划和实施方案
- 第三章 继承优良传统 弘扬中国精神
- 中国阴道炎诊治课件
- 微生物生物转化
- 冠心病的护理心得体会(11篇)
评论
0/150
提交评论