工业催化原理课件_第1页
工业催化原理课件_第2页
工业催化原理课件_第3页
工业催化原理课件_第4页
工业催化原理课件_第5页
已阅读5页,还剩396页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

工业催化原理

Catalysisinindustrialprocesses工业催化原理

Catalysisinindustrial第1章催化剂与催化作用基本知识第2章催化剂的表面吸附和孔内扩散第3章酸碱催化剂及其催化作用第4章金属催化剂及其催化作用第5章过渡金属氧(硫)化物催化剂及其催化作用第6章络合催化剂及其催化作用第7章:催化剂的制备与表征第1章催化剂与催化作用基本知识1、催化剂是化工技术的核心

80%化学工业过程(石油加工、传统化学工业、食品工业、建材工业、精细化学品工业、环保产业等)是采用催化过程来实现的。催化剂的销售额在100-200亿美元。与催化剂相关的工艺设备销售收入可达数千亿美元。2、化工技术创新的重要领域。与催化剂相关的专利等化学工艺技术、设备、方法在化工专利的绝大部分。1、催化剂是化工技术的核心催化作用的特征1催化反应和催化剂的分类2固体催化剂的组成与结构3催化剂的反应性性能及对工业催化剂的要求4多相催化反应体系的分析5催化作用的特征1催化反应和催化剂的分类2固体催化剂的组成与结1.1.1催化剂和催化作用(CatalystandCatalysis)催化剂是一种能够改变一个化学反应的反应速度,却不改变化学反应热力学平衡位置,本身在化学反应中不被明显地消耗的化学物质。催化剂是一种可以改变一个化学反应速度物质。催化作用是指催化剂对化学反应所产生的效应。1.1.1催化剂和催化作用(CatalystandCat1.1.2催化作用不能改变化学平衡催化剂催化剂在反应体系中含量达到平衡时的体积增量SO20.028.19SO20.0638.34SO20.0798.20ZnSO42.78.13HCl0.158.15草酸0.528.27磷酸0.548.10平均8.19表1-1在不同催化剂存在下三聚乙醛解聚的平衡浓度1.1.2催化作用不能改变化学平衡催化剂催化剂在反应体系中含1.1.2催化作用不能改变化学平衡关于可逆反应

根据微观可逆原理,假如一个催化反应是可逆的,则一个加速正反应速率的催化剂也应加速逆反应速率,以保持K平不变(K平=K正/K逆)。也就是说:同样一个能加速正反应速率控制步骤的催化剂也应该能加速逆反应速率。1.1.2催化作用不能改变化学平衡关于可逆反应根据微1.1.2催化作用不能改变化学平衡第一,对某一催化反应进行正反应和进行逆反应的操作条件(温度、压力、进料组成)往往会有很大差别,这对催化剂可能会产生一些影响。第二,对正反应或逆反应在进行中所引起的副反应也是值得注意的,因为这些副反应会引起催化剂性能变化。问题1:实际工业上催化正反应、逆反应时为什么往往选用不同的催化剂?1.1.2催化作用不能改变化学平衡第一,对某一催化反应进行正1.1.3催化作用改变反应历程而改变反应速度反应难以进行使合成氨实现工业生产1.1.3催化作用改变反应历程而改变反应速度反应难以进行使合催化剂改变反应历程意味着1、催化剂参与反应物之间的化学反应2、通过反应历程改变使化学反应的所需克服的能垒数值大大减少。结果:催化反应相对常规化学反应发生的条件温和得多,甚至常规条件下难以发生的反应,在催化剂参与下实现了工业化生产。问题2:请同学们举二个以上的实例?催化剂改变反应历程意味着1、催化剂参与反应物之间的化学反应问1.1.4催化剂对加速化学反应具有选择性表1-2催化剂对可能进行的特定反应的选择催化作用反应物催化剂及反应条件产物CO+H2Rh/Pt/SiO2,573K,7×105Pa乙醇Cu-Zn-O,Zn-Cr-O,573K,1.0133×107~2.0266×107Pa甲醇Rh络合物,473~573K,5.0665×107~3.0399×108Pa乙二醇Cu,Zn,493K,3×106Pa二甲醚Ni,473~573K,1.0133×105Pa甲烷Co,Ni,473K,1.0133×105Pa和成汽油1.1.4催化剂对加速化学反应具有选择性表1-2催化剂对1.1.4催化剂对加速化学反应具有选择性热反应时生成CO2比生成甲醛的能垒小很多甲醇氧化反应的不同能垒变化示意图催化反应时,生成CO和CO2的能垒明显高于生成甲醛的能垒应产物具有选择性的主要原因仍然是由于催化剂可以显著降低主反应的活化能,而副反应活化能的降低则不明显CH3OH+O2=CO2+2H2OCH3OH+O2=HCHO+2H2O1.1.4催化剂对加速化学反应具有选择性热反应时生成CO2比催化剂选择性理解1、不同催化剂对特定的反应体系有选择性(机理选择性)2、催化剂因催化剂结构不同导致选择性(扩散选择性)。问题3:催化剂的选择性在工业上有何意义?催化剂选择性理解1、不同催化剂对特定的反应体系有选择性(机理催化作用的特征1催化反应和催化剂的分类2固体催化剂的组成与结构3催化剂的反应性性能及对工业催化剂的要求4多相催化反应体系的分析5催化作用的特征1催化反应和催化剂的分类2固体催化剂的组成与结1.2.1催化反应分类酶催化反应同时具有均相和非均相反应的性质。非均相催化反应是指反应物和催化剂居于不同相态的反应。均相催化反应是指反应物和催化剂居于同一相态中的反应。按催化反应系统物相的均一性进行分类均相催化反应酶催化反应非均相(又称多相)催化反应1.2.1催化反应分类酶催化反应同时具有均相和非均相反应的性1.2.1催化反应分类表1-3催化剂对可能进行的特定反应的选择催化作用按反应类型进行分类反应类型常用催化剂加氢Ni,Pt,Pd,Cu,NiO,MoS2,WS2,Co(CN)63-脱氢Cr2O3,Fe2O3,ZnO,Ni,Pd,Pt氧化V2O3,MoO3,CuO,Co3O4,Ag,Pd,Pt,PdCl2羰基化Co2(CO)8,Ni(CO)4,Fe(CO)3,PdCl(Pph3)3*,RhCl2(CO)Pph3聚合CrO3,MoO2,TiCl4-Al(C2H5)3卤化AlCl3,FeCl3,CuCl2,HgCl2裂解SiO2-Al2O3,SiO2-MgO,沸石分子筛,活性白土水合H2SO4,H3PO4,HgSO4,分子筛,离子交换树脂烷基化,异构化H3PO4/硅藻土,AlCl3,BF3,SiO2-Al2O3,沸石分子筛1.2.1催化反应分类表1-3催化剂对可能进行的特定反应1.2.1催化反应分类按反应机理进行分类酸碱型催化反应

酸碱型催化反应的反应机理可认为是催化剂与反应物分子之间通过电子对的授受而配位,或者发生强烈极化,形成离子型活性中间物种进行的催化反应。氧化还原型催化反应

氧化还原型催化反应机理可认为是催化剂与反应物分子间通过单个电子转移,形成活性中间物种进行催化反应。1.2.1催化反应分类按反应机理进行分类酸碱型催化反应1.2.1催化反应分类表1-4酸碱型及氧化还原型催化反应比较比较项目酸碱型催化反应氧化还原型催化反应催化剂与反应物之间作用电子对的接受或电荷密度的分布发生变化单个电子转移反应物化学变化非均裂或极化均裂生成活性中间物种自旋饱和的物种(离子型物种)自旋不饱和的物种(自由基型物种)催化剂自旋饱和分子或固体物质自旋不饱和分子或固体物质催化剂举例酸,碱,盐,氧化物,分子筛过渡金属,过渡金属氧(硫)化物,过渡金属盐,金属有机络合物反应举例裂解,水合,脂化,烷基化,歧化,异构化加氢,脱氢,氧化,氨氧化1.2.1催化反应分类表1-4酸碱型及氧化还原型催化反应1.2.2催化剂分类元素周期律把元素分为主族元素(A)和副族元素(B)。用做催化剂的主族元素多以化合物形式存在。主族元素的氧化物、氢氧化物、卤化物、含氧酸及氢化物等由于在反应中容易形成离子键,主要用做酸碱型催化剂。但是,第Ⅳ~Ⅵ主族的部分元素,如铟、锡、锑和铋等氧化物也常用做氧化还原型催化剂。而副族元素无论是金属单质还是化合物,由于在反应中容易得失电子,主要用做氧化还原型催化剂。特别是第Ⅷ过渡族金属元素和它的化合物是最主要的金属催化剂、金属氧化物催化剂和络合物催化剂。但是副族元素的一些氧化物、卤化物和盐类也可用做酸碱型催化剂,如Cr2O3,NiSO4,ZnCl2和FeCl3等。按元素周期律分类1.2.2催化剂分类元素周期律把元素分为主族元素(A)和副族1.2.2催化剂分类按固体催化剂的导电性及化学形态分类表1-5按固体催化剂导电性及化学形态分类类别化学形态催化剂举例催化反应举例导体过渡金属Fe,Ni,Pd,Pt,Cu加氢,脱氢,氧化,氢解半导体氧化物或硫化物V2O5,Cr2O3,MoS2,NiO,ZnO,Bi2O3氧化,脱氢,加氢,氨氧化绝缘体氧化物盐Al2O3,TiO2,Na2O,MgO,分子筛NiSO4,FeCl3,分子筛,AlPO4脱水,异构化,聚合,烷基化,脂化,裂解1.2.2催化剂分类按固体催化剂的导电性及化学形态分类表1-催化作用的特征1催化反应和催化剂的分类2固体催化剂的组成与结构3催化剂的反应性性能及对工业催化剂的要求4多相催化反应体系的分析5催化作用的特征1催化反应和催化剂的分类2固体催化剂的组成与结1.3固体催化剂的组成固体催化剂主催化剂maincatalyst共催化剂助催化剂载体supportcarrier结构型助催化剂调变型助催化剂扩散型助催化剂毒化型助催化剂又称活性组分催化剂的主要成分同时起催化作用,缺一不可1.3固体催化剂的组成固体催化剂主催化剂共催化剂助催化剂载体1.3.1固体催化剂的组成助催化作用传热和稀释作用支撑作用稳定化作用分散作用载体1.3.1固体催化剂的组成助催化作用传热和稀释作用支撑作用稳1.3.2固体催化剂的结构固体催化剂的组成分散度化合态物相初级粒子次级粒子金属单质化合物固溶体晶态非晶态均匀度积聚方式外形表面纹理孔隙构造组分分布固体催化剂的颗粒图1-3固体催化剂的组成与结构关系1.3.2固体催化剂的结构固体催化剂的组成分散度化合态物上节课回顾上节课:1、催化剂能有哪些作用;2、合成氨催化剂主要活性组分为Fe;3、利用氧与有机物反应是合成有机物的主要手段,请问这一催化过程是部分氧化还原完全氧化过程?4、如何判断催化反应活化能大小?5、有一个催化过程,发现是连串反应:A→B→C,请问减小C组分的生成?上节课回顾上节课:1.3.2固体催化剂的结构1.3.2固体催化剂的结构催化剂的表示方法通常:1、用“/”

来区分载体与活性组分如:Ru/Al2O3,Pt/Al2O3,Pd/SiO2Au/C2、用“-”来区分各活性组分及助剂

Pt-Sn/Al2O3,Fe-AL2O3-K2O催化剂的表示方法通常:催化作用的特征1催化反应和催化剂的分类2固体催化剂的组成与结构3催化剂的反应性性能及对工业催化剂的要求4多相催化反应体系的分析5催化作用的特征1催化反应和催化剂的分类2固体催化剂的组成与结1.4.1催化剂的反应性能催化剂的活性催化剂的选择性催化剂的稳定性1.4.1催化剂的反应性能催化剂的活性1.4.1催化剂的反应性能催化剂的活性3转化率表示法CA%=反应物A转化掉的量/流经催化床层进料中反应物A的总量×100%1反应速率表示法2反应速度常数表示法1.4.1催化剂的反应性能催化剂的活性3转化率表示法CA%=催化活性在理论研究中经常采用:转换频率(Turnoverfrequency)指单位时间内每个催化活性中心上发生反应的次数。作为真正催化活性的一个基本度量。催化活性在理论研究中经常采用:1.4.1催化剂的反应性能催化剂的选择性选择性(S%)选择性因素(选择度)1.4.1催化剂的反应性能催化剂的选择性选择性(S%)选择性1.4.1催化剂的反应性能催化剂的稳定性化学稳定性耐热稳定性抗毒稳定性机械稳定性1.4.1催化剂的反应性能催化剂的稳定性化学稳定性耐热稳定性1.4.2对工业催化剂的要求工业催化剂是指具有工业生产实际意义,可以用于大规模生产过程的催化剂。一种好的工业催化剂应具有适宜的活性、高选择性和长寿命。工业催化剂的活性、选择性和寿命除决定于催化剂的组成结构外,与操作条件也有很大关系。这些条件包括原料的纯度、生产负荷、操作温度和压力等。因此,在选择或研制催化剂时要充分考虑到操作条件的影响,并选择适宜的配套装置和工艺流程。此外,催化剂的价格也是要考虑的。1.4.2对工业催化剂的要求工业催化剂是指具有工业生产实际意催化作用的特征1催化反应和催化剂的分类2固体催化剂的组成与结构3催化剂的反应性性能及对工业催化剂的要求4多相催化反应体系的分析5催化作用的特征1催化反应和催化剂的分类2固体催化剂的组成与结1.5.1多相催化反应过程的主要步骤1.5.1多相催化反应过程的主要步骤1.5.2多相催化反应中的物理过程外扩散和内扩散外扩散内扩散反应物分子从颗粒外表面扩散进入到颗粒孔隙内部,或者产物分子从孔隙内部扩散到颗粒外表面的过程,称为内扩散过程。反应物分子从流体体相通过附在气、固边界层的静止气膜(或液膜)达到颗粒外表面,或者产物分子从颗粒外表面通过静止层进入流体体相的过程,称为外扩散过程。1.5.2多相催化反应中的物理过程外扩散和内扩散外扩散内扩散1.5.2多相催化反应中的物理过程外扩散阻力:气固(或液固)边界的静止层消除方法:提高空速内扩散阻力:催化剂颗粒空隙内经和长度消除方法:减小催化剂颗粒大小,增大催化剂空隙直径为充分发挥催化剂作用,应尽量消除扩散过程的影响1.5.2多相催化反应中的物理过程外扩散阻力:气固(或液固)1.5.3多相催化反应的化学过程4321反应物化学吸附生成活性中间物活性中间物进行化学反应生成产物吸附的产物经过脱附得到产物催化剂得以复原1.5.3多相催化反应的化学过程4321反应物化学吸附生成活1.5.3多相催化反应的化学过程活性中间物种的形成活性中间体吸附作用1.5.3多相催化反应的化学过程活性中间物种的形成活性中间体1.5.3多相催化反应的化学过程催化循环的建立4321反应物化学吸附生成活性中间物活性中间物进行化学反应生成产物吸附的产物经过脱附得到产物催化剂得以复原吸附不能太强吸附不能太弱催化剂始态终态不改变:存在催化循环1.5.3多相催化反应的化学过程催化循环的建立4321反应物催化循环图催化循环图工业催化原理课件1.5.4多相催化反应的控制步骤化学反应控制催化反应若为动力学控制时,从改善催化剂组成和微观结构入手,可以有效地提高催化效率。动力学控制对反应操作条件也十分敏感。特别是反应温度和压力对催化反应的影响比对扩散过程的影响大的多。扩散控制当催化反应为扩散控制时,催化剂的活性无法充分显示出来,既使改变催化剂的组成和微观结构,也难以改变催化过程的效率。只有改变操作条件或改善催化剂的颗粒大小和微孔构造,才能提高催化效率。控制步骤1.5.4多相催化反应的控制步骤化学反应控制扩散控制控制步骤工业催化原理

Catalysisinindustrialprocesses工业催化原理

Catalysisinindustrial第2章催化剂的表面吸附和孔内扩散第2章催化剂的表面吸附和孔内扩散物理吸附与化学吸附特点物理吸附的特点:没有选择性,可以多层吸附,吸附前后,被吸附分子变化不大,吸附过程类似于凝聚和液化过程。化学吸附的特点:有选择性,只能单层吸附,吸附过程中有电子共享或电子转移,有化学键的变化电子云重新分布,分子结构的变化。物质尤其指气体或液体与固体之间的吸附可分为物理吸附和化学吸附物理吸附与化学吸附特点物理吸附的特点:没有选择性,可以多层吸物理吸附与化学吸附物理吸附与化学吸附区别物理吸附是表面质点和吸附分子之间的分子力而引起的。具体地是由永久偶极、诱导偶极、色散力等三种范德华引力。物理吸附就好像蒸汽的液化只是液化发生在固体表面上罢了。分子在发生物理吸附后分子没有发生显著变化。化学吸附是在催化剂表面质点吸附分子间的化学作用力而引起的,如同化学反应一样,而两者之间发生电子转移并形成离子型,共价型,自由基型,络合型等新的化学键。吸附分子往往会解离成原子、基团或离子。这种吸附粒子具有比原来的分子较强的化学吸附能力。因此化学吸附是多相催化反应过程不可缺少的基本因素。物理吸附与化学吸附物理吸附与化学吸附区别温度对物理化学吸附的影响1、物理吸附;2、化学吸附3、化学脱附;4、化学脱附后往往不会按原路返回。温度对物理化学吸附的影响1、物理吸附;吸附热、吸附模型、吸附态吸附热可分为以下几种:积分吸附热

微分吸附热初始吸附热均匀表面:积分吸附热等于微分吸附热吸附热、吸附模型、吸附态吸附热可分为以下几种:吸附态吸附粒子状态:解离与非解离(缔合)吸附中心状态:单点与多点相互作用:电子流向与化学键类型吸附态的多样性:同一种物质在同一固体表面吸附可随条件不同呈现不同的吸附态。吸附态不同,使催化最终产物不同吸附态吸附粒子状态:解离与非解离(缔合)等温吸附式的应用1单分子层吸附方程(Langmuir)

等温吸附式的应用1单分子层吸附方程(Langmuir)

多分子层吸附等温方程(B.E.T.)多分子层吸附等温方程(B.E.T.)吉布斯自由能吉布斯自由能活化能与质量作用定律阿累尼乌斯(Arrhenius)方程活化能与质量作用定律阿累尼乌斯(Arrhenius)方程质量作用定律基元反应速率与反应组分的浓度积成正比。质量作用定律基元反应速率与反应组分的浓度积成正比。L-H模型与E-R模型L-H(Langmuir-Hinshelwood)S-SA+B+S-SABA-BS-S产物+S-S反应是通过在表面上吸附态的两种组分A、B相互作用而进行L-H模型与E-R模型L-H(Langmuir-HinsheE-R(Eley-Rideal)A+B+SB+SASABS+产物反应是通过吸附态的组分A和气相中的组分B相互作用而进行E-R(Eley-Rideal)A+B+SB+SASABS+工业催化原理课件双组分表面动力学分析1、吸附与表面反应及脱附过程双组分表面动力学分析1、吸附与表面反应及脱附过程Lanmuir等温吸附式问题4:Lanmuir吸附模型为什么复盖率与空位率之和等于1?Lanmuir等温吸附式问题4:Lanmuir吸附模型为什么竞争吸附的Langmuir等温式竞争吸附的Langmuir等温式化学吸附态化学吸附态是指分子或原子在固体催化剂表面进行化学吸附时的化学状态、电子结构及几何构型。化学吸附态及化学吸附物种的确定是多相催化研究的主要内容。研究方法:红外光谱(IR)俄歇电子能谱(AES)、低能电子衍射(LEED)、高分辨电子能量损失谱(HREELS)、X-射线光电能谱(XPS)、紫外光电子能谱(UPS)、外光电位能谱(APS)、场离子发射、质谱闪脱附技术。问题5:吸附态研究对催化作用有何意义,请查阅相关资料对选择性氧化与深度氧化氧吸附态的不同?化学吸附态化学吸附态是指分子或原子在固体催化剂表面进行化学吸化学吸附种类解离吸附、缔合吸附解离吸附催化剂表面上许多分子在化学吸附时都会产生化学键的断裂,因为这些分子的化学键不断裂就不能与催化剂表面吸附中心进行电子的转移或共享。分子以种方式进行化学吸附,称为解离吸附。化学吸附种类解离吸附、缔合吸附H2+2M2→HMCH4+2M→CH3M+HM分子解离吸附:化学键发生均裂,中间物种为自由基,异裂时吸附活性中间物为离子基(正离子或负离子)H2+2M2→HM常见几种物质吸附态一、氢的化学吸附态1、在金属表面上氢的吸附态氢在金属表面上是发生均裂常见几种物质吸附态一、氢的化学吸附态2、在金属氧化物表面上氢的吸附态二、氧的化学吸附态1、在金属表面上氧的吸附态氧在金属表面的吸附过程相对比较复杂,一般会发生氧化作用直至体相。而对于一些只在表面形成氧化层(如W)对于金属银的吸附可以认为是在表面形成自由基(O.2、O.)也有认为形成了(O2-O-)2、在金属氧化物表面上氢的吸附态二、氧的化学吸附态2、在金属氧化物表面上氧的吸附态氧在金属氧化物表面吸附时,可以呈现多种吸附态,即电中性的分子氧、带负电荷的离子氧(O2-,O-,O2-)三、一氧化碳的化学吸附态一氧化碳在金属催化剂表面上吸附态结构有线性和桥型2、在金属氧化物表面上氧的吸附态三、一氧化碳的化学吸附态IR数据:直线型C-O伸缩振动频率>2000cm-1桥型吸附态中C-O<1900cm-1IR数据:直线型C-O伸缩振动频率>2000cm-1桥型吸附2、在金属氧化物上CO的化学吸附一氧化碳在金属氧化物上的吸附是不可逆的,一氧化碳与金属离子是以σ结合的IR:2200cm-1四、烯烃的化学吸附态1、在金属上烯烃的吸附态烯烃在过渡金属表面既能发生缔合吸附也能发生解离吸附。这主要取决于温度、氢的分压和金属表面是束吸附氢等吸附条件。如乙烯在预吸附氢的金属表面上发生σ型(如在Ni[111]面)和π型(如在Pt[100]面两缔合吸附。2、在金属氧化物上CO的化学吸附课堂提问1、物理吸附与化学吸附是催化作用发生的基础。请问:(1)物理吸附发生时化学吸附一定会发生吗?化学吸附的条件有哪些,请列举出来?2、加氢反应产物吸附比反应物吸附弱,请指出依据何在。课堂提问1、物理吸附与化学吸附是催化作用发生的基础。表面动力学方程前题1、要有一个吸附机理模型2、知道催化反应的机理3、反应的控制步骤处理4、反应速率拟稳态处理推导步骤1、质量作用定律2、表面浓度、空位率θV

,覆盖率θ关系式3、注意利用“平衡关系”和“控制步骤”“稳态”概念的含义表面动力学方程前题如何设计实验来测试催化反应的吸附态1、红外光谱法2、程序升温法(TPD、TPR、TPO、TPSR)3、原位技术如何设计实验来测试催化反应的吸附态1、红外光谱法催化剂本体的研究催化剂上吸附物种的研究骨架震动、表面基团、氧化物、分子筛等探针分子不同吸附物种、反应中间物等催化剂制备与开发表面组成、表面结构、表面电荷密度分布、不同组分间的相互作用、不同伙性中心的鉴别催化表面反应机理红外光谱应用于催化研究的各个领域催化剂本体的研究催化剂上吸附物种的研究骨架震动、表面基团、氧工业催化原理课件工业催化原理课件TPD(Temperature-programmeddesorption)程序升温脱附—是指在设定的条件下通过探针分子在催化剂表面吸附脱附过程来研究。催化剂的吸附性能(吸附中心的结构、能量状态分布、吸附分子在吸附中心上的吸附态等)和催化性能(催化剂活性中心的性质、结构和反应分子在其上的反应历程等)。TPD(Temperature-programmeddesBET方程测催化剂的比表面积P0是测试温度下的饱和蒸气压,P平衡压力Sg每克催化剂的总表面积,Vm催化剂表面铺满单分子层时所需吸附质的体积。am表观分子截面积比表面积:BET方程:P/V(P0-P)对P/P0作图得一条直线可以得到BET方程测催化剂的比表面积P0是测试温度下的饱和蒸气压,PBET方程的压力适用范围相对压力为0.05~0.30。相对压力太小,小于0.05时建立不起多层物理吸附平衡,相对压力大于0.30时,毛细也凝结变得显著,能破坏多层物理吸附平衡。BET方程的压力适用范围相对压力为0.05~0.30。相对压BET测比表面举例BET测比表面举例用液氮来测硅胶的比表面,通过利用对P/P0作图测得斜率=13.85×10-3cm-3

截距=0.15×10-3cm-3Vm=1/(斜率+截距)=71cm3(STP)硅胶样品重=0.83gSg=(71/22400)×6.02×1023×16.2×10-20/0.83=373m2.g-1用液氮来测硅胶的比表面,通过利用表征的内容与方法催化剂的宏观结构与性能催化剂的宏观结构1、催化剂密度(1)颗粒密度(2)骨架密度和堆密度2、几何形状圆球、圆柱体、圆环柱体、粉末、微球。3、比表面4、孔结构(1)孔径(2)孔径分布(3)孔容(4)孔隙率表征的内容与方法催化剂的宏观结构与性能颗粒尺寸测定大颗粒可实测,小颗粒可以利用分样筛进行分筛,粉末可以通过筛分法或得力沉降或离心沉降的方法进行测定颗粒大小。催化剂的比表面催化剂的密度单位体积催化剂的质量kg/m3或g/cm3因体积含义不同出现四种密度颗粒尺寸测定比孔体积、孔隙率、平均孔半径和孔长催化剂的微观结构和性能主要参数:催化剂本体及表面的化学组成、物相结构、活性表面、晶粒大小、分散度、价态、酸碱性、氧化还原性、各组分的分布及能量分布。比孔体积、孔隙率、平均孔半径和孔长催化剂的孔内扩散1、Knudsen(微孔扩散)分子与孔壁碰撞远比分子间的碰撞机率高。2、过渡区扩散过渡区扩散是介于Knuden扩散和体相扩散之间的过渡区。3、构型扩散表面扩散催化剂的孔内扩散1、Knudsen(微孔扩散)比表面与孔结构(1)总比表面BET方程(2)孔径分析:凯尔文(Kelvin)方程P139页(N2吸附法测小孔1.5-2.0nm)大孔用压汞法(原理相同)(3)活性表面、分散度、晶粒度

A)活性表面是利用化学吸附的选择性(吸附位数,也叫化学吸附计量数)

B)分散度:表面金属(组分)占总金属(组分)的百分比。晶粒度:晶粒大小(可用谢乐公式和投射电镜法)比表面与孔结构(1)总比表面BET方程固体晶体催化剂中的缺陷类型例子原子(离子)缺陷(点缺陷)1空位2间隙原子(离子)3杂质4取代原子(离子)5缔合中心电子缺陷1电子2空穴扩展缺陷(复合)1缺陷簇2切变面3超晶格结构线缺陷1位错面缺陷1晶体表面2晶粒间界固体晶体催化剂中的缺陷类型例子原子(离子)缺陷1空位电子缺第三章酸碱催化剂及其催化作用酸碱催化剂的应用催化裂化;烷烃异构化;芳烃异构化;烷基化转移;烷基化;芳烃烷基化;择形催化烷基化;水合反应;酯化反应;烃类芳构化。第三章酸碱催化剂及其催化作用酸碱催化剂的应用酸碱催化剂分类与催化作用固体酸碱定义(三种)S.AArrhenius(阿累尼乌斯)酸碱(1)能在水溶液中给予出质子(H+)的物质称为酸。(2)能在水溶液中给出羟基离子(OH-)的物质为碱称。J.N.Bronsted对酸碱定义(B酸碱)(1)凡是能给出质子的物质称为酸(2)凡是能接受质子的物质称为碱G.N.Lewis定义(L酸碱)(1)所谓酸,乃是电子对的受体。如BF3(2)所谓碱,则是电子对的供体。如NH3酸碱催化剂分类与催化作用固体酸碱定义(三种)酸碱通式金属氧化物表面的金属离子是L酸,氧负离子是L碱。金属离子的电负性越大,则金属离子的酸性越强。金属氧化物的碱性也可以同电负性相关联,但由于金属氧化物表面往往含有羟基这时的酸碱性由M-OH中M-O的键本质决定.若M-O键强,则解离出H+,显酸性,反之,若M-O键弱,则解离出OH-,显碱性。酸碱通式金属氧化物表面的金属离子是L酸,氧负离子是L碱。金属固体酸碱催化剂的种类与应用固体酸碱催化剂分类主要有以下几种:天然的、浸渍的,离子交换树脂,金属氧化物硫化物,金属盐类,合成复合氧化物。应用(催化反应):脱水,水合,聚合,裂解,烷基化,歧化,异构化,脱烷基等等。固体酸碱催化剂的种类与应用固体酸碱催化剂分类固体酸碱的结构特点与酸碱性固体酸碱的结构特点一般为典型固体酸碱是绝缘体,离子键,表面酸碱性不均匀。但从广义上讲大多数金属氧化物以及由它们组成的混合和复合氧化物都具有酸碱性。使用时应注意:温度和水含量(对酸碱性影响。(特别对B酸碱的影响)酸碱性产生的原因:局部电荷不平衡固体酸碱的结构特点与酸碱性固体酸碱的结构特点Al2O3表面的脱水过程a中氧离子具有碱性,b中的Al具有L酸性

:代表AlAl2O3表面的脱水过程a中氧离子具有碱性,酸碱性的测定与酸碱性调节酸型(L,B)鉴定:吡啶吸附后红外光谱会出现特征峰在红外光谱~1550cm-1处有一特征峰,B型酸。酸碱性的测定与酸碱性调节酸型(L,B)鉴定:在红外光谱~15相反,如和L-酸配位,将得到一种配位化合物这时在~1450cm-1处有一特征峰也可以利用紫外-可见光谱来测酸型。这时应采用带共轭体系的吸着分子,如蒽,芘,三苯甲烷等。相反,如和L-酸配位,将得到一种配位化合物这时在~1450cSiO2表面酸性从图可以看出吡啶在SiO2上的吸附只是物理吸附。150℃抽真空后,几乎全部脱附,进一步表明纯SiO2上没有酸性中心。SiO2表面酸性从图可以看出吡啶在SiO2上的吸附只是物理Al2O3表面酸性Al2O3

表面只有L酸中心(1450cm-1),看不到B酸中心。Al2O3表面酸性Al2O3表面只有L酸中心(1450SiO2-Al2O3表面酸性从图吡啶吸附在SiO2-Al2O3

表面上的红外光谱。在200℃抽真空后于1600~1450cm-1范围内出现1540cm-1表面除存在L酸部位外,尚存在B酸部位。SiO2-Al2O3表面酸性从图吡啶吸附在SiO2-AlHY沸石表面酸性从图中看到,400℃脱水后HY沸石出现三个羟基峰3744、3635、3545cm-1吡啶吸附再经150℃抽真空后1540cm-1(B)和1450cm-1(L)经过420℃抽空后,B酸中心上吸附的吡啶(1540cm-1)和L酸中心上吸附的吡啶仍十分强。并且3635cm-1羟基峰也未能恢复。表明HY沸石表面3635cm-1峰的羟基是非常强的B酸中心。同时HY沸石表面的L酸中心也是强酸中心。HY沸石表面酸性从图中看到,400℃脱水后HY沸石出现三固体酸的强度和酸量酸强度是指给出质子的能力(B酸强度)或接受电子对的能力(L酸强度)用函数H0表示H0=Pka+㏒[B]a/[BH+]a测试方法:正丁胺指示剂滴定法测是总酸度和酸强度气态碱吸附脱附法(NH3,吡啶等)--程序升温脱附法(TPD)脱附温度越高酸强度越强。固体酸的强度和酸量酸强度是指给出质子的能力(B酸强度)或接受工业催化原理课件酸量:固体酸表面的酸量,通常用单位重量或者单位表面积上酸位的毫摩尔数来表示。(mmol/wt,mmol/m2)固体碱强度与碱量碱强度:定义为表面吸附的酸转成为共轭碱的能力,或给出电子对的能力。碱量:碱中心的浓度,测定方法用气态酸性吸附质,如苯酚,氧化氮等酸量:固体酸表面的酸量,通常用单位重量或者单位表面积上酸位的酸位酸强与催化作用关系(1)大多数酸催化与B酸位有关。如异构化,苯类歧化,脱烷基化等。(2)有些反应需L酸位。如有机物的乙酰化反应及涉及π重组。(3)有的反应需要强B酸作用下才能发生。如烷基芳烃的歧化等。(4)有的反应需要L酸,B酸同时存在而且有协同效应才行。酸强不同有不同的催化活性进而影响选择性。特定的反应要求一定的酸强范围。酸位酸强与催化作用关系(1)大多数酸催化与B酸位有关。Tanable模型金属离子的配位数不变。氧离子的配位数与主体氧化物相同。Tanable模型金属离子的配位数不变。多相酸碱催化一、正碳离子的形成多相酸碱催化一、正碳离子的形成酸中心类型与催化活性、选择性关系不同的酸性催化反应往往需要不同的酸性中心。酸中心类型与催化活性、选择性关系不同的酸性催化反应往往需要不工业催化原理课件异丙苯裂解在B酸中心下进行异丙苯裂解在B酸中心下进行酸性强弱与催化反应关系烃类骨架异构化需要的酸性中心最强,其次是烷基芳烃脱烷基,再其次是异构烷烃裂化和烯烃的双键异构化,脱水反应所需的酸性中心强度最弱。酸性强弱与催化反应关系烃类骨架异构化需要的酸性中心最强,其次固体超强酸碱固体超强酸固体酸的强度超过100%硫酸的酸强度则称为超强酸。H0﹤-11.9固体超强碱指H0>26的固体碱固体超强酸碱固体超强酸常见的超强酸ClSO3HSbF6-SiO2.ZrO2SO42-Fe2O3常见的超强酸ClSO3H酸碱性的调节为了实现一定的催化目的,调节催化剂的酸碱性是必要的。(1)金属氧化物表面上的金属离子是L酸,氧负离子是L碱。表面羟基的酸碱性由M-OH的M-O键决定。若M-O键强,则H+离出,呈现酸性,反之离出OH-呈现碱性。据此可以调节酸碱性。(2)B,L酸转化根据催化反应要求可利用H2O作为质子源进行调节(HX,RH也可以调节)用Na+取代H+可以消来B酸此外温度变化对某些催化剂会引起B,L酸变化。如SiO2等。酸碱性的调节为了实现一定的催化目的,调节催化剂的酸碱性是必要常见固体酸碱催化剂酸碱中心形成1、浸渍法可以得到B酸位2、卤化物可以提供L酸位3、离子交换树脂可以提供B酸碱4、单氧化物酸碱中心形成主要是由于在形成氧化物过程中由于失水作用面在表面形成常见固体酸碱催化剂酸碱中心形成1、浸渍法可以得到B酸位工业催化原理课件杂多酸化合物酸中心形成杂多酸化合物是指杂多酸及其盐类。形成机理1、酸性杂多酸盐中的质子可给出B酸中心。2、与金属离子配位水的酸式解离给出质子3、制备时发生部分水解给出质子4、金属离子提供L酸中心5、金属离子还原产生质子杂多酸化合物酸中心形成杂多酸化合物是指杂多酸及其盐类。TPD表征固体酸性TPD表征固体酸性混合氧化物固体酸和固体碱4/4-2/3=1/3正电荷过剩为L酸,若负电荷过剩为B酸。(Tanabe模型)混合氧化物固体酸和固体碱4/4-2/3=1/3正电荷过剩为重要的反应1、异构化2、C-C成键---叠合和烷基化3、C-C断键4、环化和成焦重要的反应1、异构化固体酸的制备技术固体酸的制备技术固体酸催化剂的发展趋势为了适应精细化工生产中催化剂同反应物和产物的分离,特别是纳米催化剂技术在不远的将来会逐渐成为催化研究和应用的新热点。出现了如下形式的催化剂:(1)纳米磁性固体酸催化剂将是固体酸催化剂发展新趋势之一。如尼泊金丁酯合成(ZrO2/Fe3O4

)(2)负载型杂多酸固体酸催化剂。此外,交联型固体酸催化剂(硅锆交联蒙脱土)固体酸催化剂的发展趋势为了适应精细化工生产中催化剂同反应物和精细化工合成增塑剂1邻苯二甲酸二酯(DOP)(由苯酐和2-乙基己醇合成催化剂为SO2-4/TiO2-Al2O3酯化率可达99%2己二酸二辛酯(DOA)(PVC优良耐寒助剂(SO2-4/ZrO2-La2O3)3蔗糖八乙酯(SO2-4/TiO2)精细化工合成增塑剂2合成香料乙酸松油酯SO42-/TiO2(柠檬香味)庚酸丁酯SO42-/TiO2-La3+(苹果香晶成分)醋酸丁酯SO42-/ZrO2-TiO2-La3+(苹果香味)2合成香料3合成表面活性剂表面活性剂具有起泡、消泡、乳化、分散、增溶、洗涤、润湿等作用。硬脂酸聚乙二醇400单酯(PEGMS)非离子型表面活性剂(SO42-/ZrO2)烷基葡萄糖苷(APG)绿色非离子型表面活性剂广泛用于化妆品、洗涤剂医药领域(SO42-/Al2O3)氨基酸表面活性剂(氨基酸月桂酯)(SnCl4/C)3合成表面活性剂4在合成涂料中应用乙二醇单乙醚乙酯作为皮革粘结剂油漆剥离剂(SO42-/TiO2)丙烯酸丁酯用于表面涂料,粘合剂,密封剂,皮革处理剂(SO42-/TiO2)甲基丙烯酸异丁酯是耐酸耐碱性涂料的基料SO42-/ZrO2-TiO24在合成涂料中应用L-H模型与E-R模型L-H(Langmuir-Hinshelwood)S-SA+B+S-SABA-BS-S产物+S-S反应是通过在表面上吸附态的两种组分A、B相互作用而进行L-H模型与E-R模型L-H(Langmuir-HinsheE-R(Eley-Rideal)A+B+SB+SASABS+产物反应是通过吸附态的组分A和气相中的组分B相互作用而进行E-R(Eley-Rideal)A+B+SB+SASABS+表面动力学方程前题1、要有一个吸附机理模型2、知道催化反应的机理3、反应的控制步骤处理4、反应速率拟稳态处理推导步骤1、质量作用定律2、表面浓度、空位率θV,覆盖率θ关系式3、注意利用“平衡关系”和“控制步骤”“稳态”概念的含义表面动力学方程前题吉布斯自由能吉布斯自由能双组分表面动力学分析吸附与表面反应及脱附过程双组分表面动力学分析吸附与表面反应及脱附过程工业催化原理课件工业催化原理课件在金属氧化物催化剂上的变换反应历程为:

为活性中心,按Langmuir吸附模型,推导(1)为控制步骤的动力学方程解:依题意,由(1)式,知:r1=ksPH2Oθv-ksPH2θo由(2)式,知:kdθoPCO=kaθvPCO2由L吸附模型,θv+θo=1将上述三式联立,得:r=r1=ksPH2O/(1+KPCO2/PCO)-KksPCO2/(1+KPCO2/PCO)(这里,令K=ka/kd)在金属氧化物催化剂上的变换反应历程为:复习课1、催化剂失活,可从中毒、积炭、催化剂结构发生变化如晶粒长大,发生迁移和烧结,中毒不都是不利的也可以提高选择性。中毒主要是强吸附,或介质与催化剂活性中心发生化学反应生成新物种而导致的。积炭是与催化过程的主副反应过程相关的,特别是含有脱氢聚合,C-C键裂的催化反应是极容易积炭的,催化裂化过程发生了积炭但由于充分利用流化床技术,将积炭进行烧炭过程从而转化为催化裂化获取热量的好途径。对于多活性中心催化体系,对我们不需要的活性中心在研发催化剂体系中加入选择性中毒助剂,将易于发生副反应的活性中心毒化掉,从而使副反应不发生,也就提高了催化剂选择性。复习课1、催化剂失活,可从中毒、积炭、催化剂结构发生变化如晶2、催化剂的组成与催化作用催化剂构成有活性组分和助剂,有些催化剂还需要载体,活性组分形式有些催化剂只有一种活性组分,有些必需有两个或两个以上组份共同作用才构成催化剂的活性相(活性组分)如硅铝催化剂是由二氧化硅与三氧化铝共同起作用,但独的二氧化硅和三氧化铝都没有这个催化作用。活性组份可以分为半导体、绝缘体、导体、也可以分为金属、氧化物、络合物等。金属催化剂(活性组分)主要是过渡金属,过渡金属。2、催化剂的组成与催化作用这里要特别强调,各类催化剂的特点,如过渡金属催化剂,主要用在加氢、脱氢,选择性加氢与氧化过程。这里选择加氢与几何适应有一定关联,而下面提到的选择性氧化与催化剂表面氧种种类有关系。过渡金属氧化物(半导体)催化剂一般可用在加氢,脱氢,深度氧化,选择性氧化等过程酸碱催化剂(一般为绝缘体催化剂)一般用在裂化,异构化,脱氢,取代,脱水等过程有关系。这里要特别强调,各类催化剂的特点,如过渡金属催化剂,主要用在助剂有电子助剂结构助剂,助剂的作用是多方面的,如可以改变催化剂的化学组成,价态,酸碱性,晶格结构,表面组成,孔径大小与孔径分布,机械强度等。总之,它是起辅助作用,对催化剂的催化性能起改善作用。如合成氨加入K2O,重整催化剂中加入Re分子筛中加入稀土等(见P9的1-3表)加入石墨可以起到造孔与改善孔结构的目的。选用助剂过程一般是在主活性组分已经确立的情况下,根据主活性组分的特点与你所关注的主反应与副反应,通过助剂来改进催化性能,如提高活性,选择性,传热性能,机械强度,稳定性等等。如金属催化剂,如果主反应是脱氢,你马上可以推出相对加氢温度要高,有可能发生(利用化学知识,)金属虽然熔点很高但从材料学角度会出现0.3-0.5Tm的情况,发生晶粒团聚长大甚至烧结现象。(P9图1-3及相关文字叙述的情况)加入助剂来进行改善等等。也可以利用载体来分散作用。助剂有电子助剂结构助剂,助剂的作用是多方面的,如可以改变催化我们已经讲过表征手段,出现这种现象如何表征,宏观上活性选择性下降,微观,电镜(TEM)扫描电镜(SEM)来看出现晶粒发生(前面所说的长大与团聚、烧结等现象。改进之后要进行活性与表征对比。又出现什么现象。(更进一步,如用红外出现什么现象研究吸附态,XPS出现什么现象研究表面价态分布和组成,TG与DTA上出现象如积炭会出现峰)我们已经讲过表征手段,出现这种现象如何表征,宏观上活性选择性对催化剂组成与助剂,从制备的角度,我们应考虑些有关的问题。如多组分浸渍过程如何操作可以得到负载型催化剂表表面均匀的贵金属催化剂,及不均匀分布中几中情况,采用何种相应制备手段可以实现。进一步了解一下浸渍法有几种方式。工业催化剂再生方式有几种,毒物的种类积炭是引起失活的一种原因,P107详细列出一些常见的催化反应易产生积炭的情况。但催化剂导热性不好或反应器超温运行都有可能引起积炭发生,前面讲了流化催化裂化烧炭过程巧妙利用,而防止积炭从工艺上讲还可以利用蒸气或临氢条件进行也可以。对催化剂组成与助剂,从制备的角度,我们应考虑些有关的问题。如工业催化原理课件工业催化原理课件催化剂本体的研究催化剂上吸附物种的研究骨架震动、表面基团、氧化物、分子筛等探针分子不同吸附物种、反应中间物等催化剂制备与开发表面组成、表面结构、表面电荷密度分布、不同组分间的相互作用、不同伙性中心的鉴别催化表面反应机理图16红外光谱应用于催化研究的各个领域催化剂本体的研究催化剂上吸附物种的研究骨架震动、表面基团、氧TPD(Temperature-programmeddesorption)程序升温脱附—是指在设定的条件下通过探针分子在催化剂表面吸附脱附过程来研究。催化剂的吸附性能(吸附中心的结构、能量状态分布、吸附分子在吸附中心上的吸附态等)和催化性能(催化剂活性中心的性质、结构和反应分子在其上的反应历程等)。TPD(Temperature-programmeddesBET方程测催化剂的比表面积P0是测试温度下的饱和蒸气压,P平衡压力Sg每克催化剂的总表面积,Vm催化剂表面铺满单分子层时所需吸附质的体积。am表观分子截面积比表面积:BET方程:P/V(P0-P)对P/P0作图得一条直线可以得到BET方程测催化剂的比表面积P0是测试温度下的饱和蒸气压,PBET方程的压力适用范围相对压力为0.05~0.30。相对压力太小,小于0.05时建立不起多层物理吸附平衡,相对压力大于0.30时,毛细也凝结变得显著,能破坏多层物理吸附平衡。BET方程的压力适用范围相对压力为0.05~0.30。相对压BET测比表面举例BET测比表面举例用液氮来测硅胶的比表面,通过利用对P/P0作图测得斜率=13.85×10-3cm-3

截距=0.15×10-3cm-3Vm=1/(斜率+截距)=71cm3(STP)硅胶样品重=0.83gSg=(71/22400)×6.02×1023×16.2×10-20/0.83=373m2.g-1用液氮来测硅胶的比表面,通过利用沸石与分子筛沸石是指具有骨架型结构的硅酸盐中的硅(Si4+)被铝(Al3+)部分取代后形成的硅铝酸盐。由于灼烧是晶体中的水被赶出,产生类似沸腾的现象,故称为沸石或泡沸石。这种硅酸盐晶体具有很在的空旷的硅氧骨架,在结构中具有许多均匀的孔道,对与之吸附作用分子起筛分作用故称之为分子筛。沸石与分子筛沸石是指具有骨架型结构的硅酸盐中的硅(Si4+)分子筛的结构构型分子筛的结构构型三种层次:(1)基本结构单元是硅氧四面体(SiO4)和铝氧四面体(AlO4)(2)硅氧四面体和铝氧四面体可通过氧原子(氧桥)联结起来形成环。由四个四面体形成一个环就叫四元氧环。以此类推有五元氧环、六元氧环,八元氧环,十元氧环和十二元氧环等。窗口氧环的孔口对通过的分子起筛分作用。分子筛的结构构型分子筛的结构构型三种层次:(3)各种不同的环通过氧桥相互联接又可形成三维空间的多面体。各种各样的多面体构成中空的笼。笼进一步相互联接形成分子筛。常见笼简介α笼:A型分子筛骨架结构的主要孔穴。它是一个二十六面体,由十二个四员环,八个六员环以及六个八员环所组成,共有26个面,48个顶角,笼中平均有效直径为1.14nm有效体积为0.76nm3外界分子通过八员环进入笼中。(3)各种不同的环通过氧桥相互联接又可形成三维空间的多面体。Β笼:它上一个十四面体,由六个四元环和八个六元环所组成,共有二十四个顶角。β笼可以看作是由立方体和正八面体共同组成的,也称立方八面体。笼中平均有效直径为0.66nm,有效体积为0.16nm3。八面沸石笼:它也是一个二十六面体,由十八个四元环,四个六元环和四十二个十二元环所组成。笼的平均有效直径为1.25nm,有效体积为0.85nm是X和Y型分子筛最主要的孔穴,其中十二员环孔径0.9nm左右为主要通道。Β笼:它上一个十四面体,由六个四元环和八个六元环所组成,共工业催化原理课件常见的分子筛结构特点A型分子筛:将β笼放在立方体的八个顶点上,并用立方体笼(γ笼)互相联结起来,中间形成了α笼。α笼之间通道由一个八元环的窗口相连接,直径约0.4nm故称为4A分子筛。A型分子筛的有效孔径随骨架外的金属离子而异,当金属离子为Na时,有效孔径为4A,称为4A型分子筛,用K+取代Na+后,有效孔径变小称为3A分子筛,当Na+有70-80%被Ca2+取代,有效孔径扩大,称为5A分子筛。5A脱蜡,4A干燥(甲,乙,丙烷分离,3A干燥乙烯,丙烯等。常见的分子筛结构特点A型分子筛:将β笼放在立方体的八个顶点上A型沸石的晶体结构A型沸石的晶体结构正八面体截角八面体正八面体截角八面体X、Y型分子筛:区别只在于硅铝比的不同,结构同天然的八面沸石相近又称八面沸石。具体:将金刚石的密堆立方晶系结构中的碳原子用β笼,再用六方笼相联结,形成了八面沸石晶体结构。相通的窗孔为十二元环。有效孔径为0.74nm。Si/Al=1-1.5为X型,1.5-3.0为Y型X、Y型分子筛:区别只在于硅铝比的不同,结构同天然的八面沸石丝光沸石型分子筛结构特点:没有笼(与A型,X,Y型不同)而是层状结构,由成对的五元环联结在一起,然后通过氧桥同另一对联结,联结处形成四元环,进一步联结形成层状结构。结构中有八元环和十二元环。十二元环呈椭圆形,平均直径0.74nm,是丝光沸石的主孔道,一维直通孔道。丝光沸石型分子筛工业催化原理课件工业催化原理课件高硅沸石ZSM型分子筛(ZSM-5,ZSM-8,ZSM-11等)ZSM-5:Si/Al=50ZSM-8:Si/Al=100结构特点:与丝光沸石相似由成对的五元环组成,无笼,只有通道。ZSM-5有两组交叉通道,由十元环形成窗口孔径约为(0.55-0.6)nm此外,还有全硅型Silicalite-1对应ZSM-5,Silicalite-2对应ZSM-11。高硅沸石ZSM型分子筛(ZSM-5,ZSM-8,ZSM-11工业催化原理课件工业催化原理课件分子筛的催化性能与调变酸性分子筛酸性中心形成的机理:是由分子筛本身所固有结构来决定的。(1)分子筛中起电荷平衡的钠被H+所取代而产生酸性。(2)高价金属阳离子Mn+取代Na+离子时,由于水合金属离子作用,使高价金属离子和分子筛结构之间存在着较强的电场,使吸附在上面的水极化而解离,产生H+酸性。分子筛的催化性能与调变酸性分子筛酸性中心形成的机理:是由分子分子筛可以看作由平衡电荷的金属阳离子和起骨架作用的硅铝氧阴离子构成,电荷可以被部分有效地被屏蔽。这样阳离子很容易被取代,而呈现不同性质。择形催化()分子筛可以看作由平衡电荷的金属阳离子和起骨架作用的硅铝氧阴离工业催化原理课件工业催化原理课件工业催化原理课件工业催化原理课件工业催化原理课件工业催化原理课件工业催化原理课件分子筛在其它方面的应用吸附分离生物酶的提纯分离(分子筛层析)分子筛在其它方面的应用吸附分离金属催化剂及其催化作用金属催化剂分类块状金属催化剂负载型金属催化剂合金型金属催化剂金属互化物催化剂金属簇状物催化剂几乎所有的金属催化剂都是过渡金属。金属催化剂及其催化作用金属催化剂分类金属表面上分子的吸附态分子吸附在金属表面上,与其表面原子间形成吸附键,构成分子的吸附态。吸附键的类型可以是共价键,配位键或者离子键。金属表面上分子的吸附态(1)分子在吸附前先必须解离(如H2,饱和烃)(2)具有孤对电子或π电子的分子可以非解离的化学吸附。金属表面上分子的吸附态分子吸附在金属表面上,与其表面原子间形分子在金属上的活化及吸附强度金属催化剂的一个重要功能是为提供活的原子(反应中间态)金属对气体分子化学吸附强度顺序是O2>C2H2>C2H4>CO>H2>CO2>N2分子在金属上的活化及吸附强度教材中表2-1可以作为对某个催化反应选择催化剂的依据。如合成氨,只有选择A组中的金属。CO的加氢,A,B1和B2组金属应该有活性。金属催化剂化学吸附的几何因素金属的化学吸附除了电子因素会起作用外,几何因素也相当重要。金属表面的吸附部位的主要区别是在于其最邻近的配位数和二维的对称性。教材中表2-1可以作为对某个催化反应选择催化剂的依据。如合成Ni的不同晶面及吸附的乙烯情况Ni的不同晶面及吸附的乙烯情况气体在金属催化剂上的吸附态1、H2的吸附态H2在金属表面是均裂离解吸附。

H2+2*→2H*2、氧的吸附态(1)氧的各种吸附态氧有多种吸附态。现在已经确定的有O2-*,O22-*,O-*,O2-*等负离子吸附态认及电中性的他子氧吸附态,此外,在低温下还不稳定的O3-*O-*+O2O3-*O2(气)→O2(吸)→O2-*→2O-*→2O2-*气体在金属催化剂上的吸附态1、H2的吸附态不同的氧吸附态具有不同的催化能力。现在认为O-*的反应能力强,与烃类的深度氧化有关,而在乙烯的选择性氧化制环氧乙烷的Ag催化剂上O2-*是导致主反应的吸附态。3、氮的吸附态氮在金属表面的吸附呈二位吸附或多核吸附。不同的氧吸附态具有不同的催化能力。4、一氧化碳的吸附态一氧化碳是最富有吸附变化的一种小分子气体常作为研究固体表面性质的探针使用。(1)CO在Ni膜上吸附时,通过计算吸附分子数与表面原子数之比表明是一位化学吸附。形成NiCO形式。(2)CO在Mo膜和Rh膜上吸附时,吸附量与的H2化学吸附量几乎相等,故可认为是二位吸附。而在Fe膜和W膜上时吸附量为H2的化学吸附量的1.23倍和1.40倍可以一位吸附和二位吸附的混合。4、一氧化碳的吸附态CO一位、二位、孪生和离解吸附态(1)CO可以通过π电子与金属表面的自由价作用形成一位吸附(2)CO可以通过杂化而与2个金属原子的自由价形成桥接的二位吸附CO一位、二位、孪生和离解吸附态(3)孪生吸附态当Rh的粒度很小时,除了一位吸附和二位吸附还有孪生吸附态,一个Rh同2个CO分子结合成如下形式。(4)CO解离吸附态当温度足够高时在许多金属表面上CO会解离成单独的C和O原子,并占据着吸附位。(3)孪生吸附态CO与金属产生不同的吸附态与金属的种类,载体的类型以及温度和压力都有一定的关系。如二位吸附,在铂上一位吸附上优势。在钨和铁上,两种吸附(一位、二位都有相当比例)。在很小粒径的金属铑上可以发生孪生现象。而在Pt以氧化铝为载体比以二氧化硅为载体出现二位吸附态数量要大很多。如温度升高对CO的解离吸附有很大影响。CO与金属产生不同的吸附态与金属的种类,载体的类型以及温度和CO吸附态与催化活性的关系在不同的条件下,在不同金属催化剂在呈现不同的吸附态对反应的活性是有很大影响的。如CO甲烷化反应:采用Cu和Pt,由于CO吸附形式为线形一位吸附,反应活性很低。而采用Ni,Pd时,由于为桥接二位吸附,反应活性很高。CO吸附态与催化活性的关系在不同的条件下,在不同金属催化剂在5、烃类的吸附态(1)不饱和烯烃吸附不饱和烃由于有π键存在,故很易在金属上化学吸附,其不发生离解的吸附态分两类,即:σ型不饱和烃的π键均裂,C原子从sp2杂化变为sp3杂化(对烯烃)5、烃类的吸附态σ-π型也存在C=C、C-H发生离解吸附情况(2)乙炔吸附态乙炔在金属表面的吸附比乙烯强相应有π一位或σ二位吸附及离解吸附型。σ-π型(3)苯的吸附态有六位σ和二位σ吸附缔合和解离吸附(4)饱和烃在金属上的化学吸附是离解吸附(3)苯的吸附态复习课:过渡金属与氧化物催化剂金属催化剂(过渡金属和贵金属)适合作金属催化剂的元素特征一般是d区元素(ⅠB、ⅥB、ⅦB、Ⅷ)外层电子排布:最外层1-2个S电子次层1-10d电子。贵金属结构特点贵金属结构中d全充满,而S未满。但S轨道与d轨道有重叠,d轨道的电子可以跃迁到S轨道,从而使d轨道上有未成对电子的能级,从而产生化学吸附。复习课:过渡金属与氧化物催化剂金属催化剂(过渡金属和贵金属)金属催化剂的形态一般来说是晶体形式存在,呈现多晶结构,晶体表面裸露着的原子可为化学吸附分子提供很多吸附中心。吸附中心的高密度、多样性是金属催化剂具有的优点之一,同时也引起其本身的弱点的原因之一。可以催化几个竞争反应同时发生,从而降低了目的反应的选择性。可以使双原子如H2、N2、O2等解离。金属催化剂的形态金属的逸出功

FeCoNiCrCuMo4.484.414.514.604.104.20RhPdAgWRePt4.484.554.804.535.105.32反应物分子的电离势反应物分子将电子从反应物移到外界所需的最小功用I来表示。代表反应分子失电子难易程度。金属的逸出功1、φ>I时,电子从反应物向金属催化剂表面转移,反应物变成正离子。这时反应物与催化剂形成离子键。其强弱程度决定于φ与I相对大小。这种情况下,正离子层可以降低催化剂表面的电子逸出功。2、当φ<I时,电子将从金属催化剂表面向反应物分子转移,使反应物分子变成吸附在金属催化剂上的负离子。吸附也形成离子键。强度同φ与I差值有关,差值越大键强越强。这种负离子吸附层可以增加金属催化剂的电子逸出功。1、φ>I时,电子从反应物向金属催化剂表面转移,反应物变成3、φ≈I时,电子难于发生完全转移,这时形成共价键。实际上,I和φ不是绝对相等的。如果反应物带孤立的电子对,金属催化剂上有接受电子对的部位,反应物分子就会将孤立的电子对给予金属催化剂而形成配价键结合,亦就是产生L酸中心→络合催化(下次课讲)。化学吸附后金属金属的逸出功会发生变化。如O2,H2,N2,饱和烃在金属上吸附时。金属将电子给予被吸附分子在表面上形成负电子层如Ni+N-,W+O-等造成电子进一步逸出困难,逸出功增大。而当C2H4,C2H2,CO(有π键)把电子给予金属,金属表面形成正电层,使逸出功降低。3、φ≈I时,电子难于发生完全转移,这时形成共价键。实际上化学吸附过程是往往是催化反应的控制步骤。(1)若反应控制步骤是生成负离子吸附态,那么就要求金属表面容易给出电子。Φ值要小,才有利造成成这种吸附态。举例1如某些氧化反应是以O-、O2-、O=等吸附态为控制步骤。当催化剂的Φ越小,氧化反应活化能越小。化学吸附过程是往往是催化反应的控制步骤。(2)若反应控制步骤是生成正离子吸附态时,则要求金属催化剂表面容易得到电子,这时Φ越大,反应的活化能越低。(3)若反应控制步骤为形成共价吸附时,则要求金属催化剂的Φ=I相当为好。在制备催化剂时如何改变催化剂的逸出功:一般采用加助剂方法,从而达到提高催化剂的活性和选择性的目的。(2)若反应控制步骤是生成正离子吸附态时,则要求金属催化剂表举例2:HCOOH→H2+CO2首先发现催化过程是HCOOH+金属催化剂生成类甲酸盐进一步生成CO2和H2。HCOOH+金属→类甲酸盐→金属+H2+CO2举例2:HCOOH→H2+CO2由能带理论得出的d空穴与催化活性的关系不成对的电子引起顺磁或铁磁性。铁磁性金属(Fe、Co、Ni)的d带空穴数字上等于实验测得的磁距。测得d空穴为2.2,1.7,0.6d空穴越多可供反应物电子配位的数目越多,但主要从相匹配来考虑。举例3Fe=2.2(d空穴),钴(1.7)镍(0.6)合成氨中需三个电子转移,因此采用Fe比较合适。举例4

加氢过程,吸附中心的电子转移为1。对Pt(0.55)Pd(0.6)来说更适合加氢。由能带理论得出的d空穴与催化活性的关系不成对的电子引起顺磁或金属催化剂晶体结构对催化作用的影响反应物分子吸附在催化剂表面所形成的位数一般存在独位吸附,双位吸附和多位吸附。对催化作用的影响一般来说,独位吸附时,催化剂的几何因素影响较小。双位有几何适应的问题,而多位存在几何适应和吸附位的分布问题。金属催化剂晶体存在缺陷和不均一表面对催化活性有影响,如Frankel(弗兰克尔)Schottky(肖特基)缺陷。此外机械、化学、电子缺陷也对催化过程产生影响。金属催化剂晶体结构对催化作用的影响反应物分子吸附在催化剂表面晶粒大小金属催化剂催化影响因素分散度D=表面原子数/(表面+体相)原子数载体晶粒大小的改变会使晶粒表面上活性位比例发生改变,几何因素影响催化活性。晶粒越小载体对催化活影响越大。晶粒越小可能使晶粒上电子性质与载体不同从而影响催化性能。金属催化反应的结构敏感性结构敏感反应指催化反应速度对金属表面细微结构变敏感的反应。晶粒大小金属催化剂催化影响因素分散度D=表面原子数/(表面+一般说仅涉及C-H键的催化反应对结构不敏感,而涉及C-C键或者双键(π)变化可发生重组的催化反应为结构敏感反应。金属与载体相互作用总地说,存在载体与金属之间电子的相互转移情况发生。(1)金属与载体接触而产生相互作用。(2)当金属晶粒很小时,金属进入载体晶格中对催化性能影响较大。(3)金属表面被载体氧化物所修饰。一般说仅涉及C-H键的催化反应对结构不敏感,而涉及C-C键或溢流氢现象:指被活化的物种从一相向另一相转移(另一相是不能直接吸附活化产生该物种的相)如Pt/Al2O3环己烷脱氢过程活性对Pt负载的量变化不太敏感现象可以用“溢流氢”解释。溢流的作用使原来没有活性载体变成有活性的催化剂或催化成份。溢流现象也不局限于氢,氧也可以发生溢流。如Pt/Al2O3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论