版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省廊坊市三河马起乏中学2022-2023学年高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若复数为纯虚数,则实数的值为A.
B.
C.
D.或参考答案:D2.已知集合,,则(
)A.
B.
C.
D.参考答案:B在数轴上表示出对应的集合,可得(-1,1),选B3.已知四棱柱中,侧棱,,底面的边长均大于2,且,点在底面内运动且在上的射影分别为,,若,则三棱锥体积的最大值为(
)A.
B.
C.
D.参考答案:B4.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为(
)A.
B.
C.0
D.参考答案:B5.已知两点,以线段为直径的圆的方程是
(A)
(B)
(C)
(D)参考答案:D考点:圆的标准方程与一般方程因为中点为圆心,为半径,
所以,圆的方程是
故答案为:D6.若定义在R上的偶函数满足,且当[0,1]时,,则函数的零点个数是(
)
A.2个
B.3个
C.4个
D.多于4个参考答案:C本题考察函数性质的综合运用,利用数形结合法求解。由已知函数是周期为2的周期函数且是偶函数,由[0,1]时,,结合以上性质画出函数的图象,再在同一坐标系中画出的图象,观察交点个数即可,如下图所示。
显然两图象有4个交点,则函数的零点有4个,故选择C。7.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是(
)表1表2表3表4A.成绩
B.视力
C.智商
D.阅读量参考答案:D,,,。分析判断最大,所以选择D。
8.设,.若对任意实数x都有,则满足条件的有序实数对(a,b)的对数为().A.1 B.2 C.3 D.4参考答案:B试题分析:,,又,,注意到,只有这两组.故选B.【考点】三角函数【名师点睛】本题根据三角函数的图象和性质及三角函数的诱导公式,利用分类讨论的方法,确定得到的可能取值.本题主要考查考生的逻辑思维能力、基本运算求解能力、数形结合思想、分类讨论思想等.9.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},则集合A∩B中的元素个数为()A.0B.1
C.2
D.无穷个参考答案:C10.若,且,则的值为(
)A. B. C. D.参考答案:D∵,∴,且∴∴∵∴∴故选D
二、填空题:本大题共7小题,每小题4分,共28分11.已知存在实数a,满足对任意的实数b,直线y=-x+b都不是曲线的切线,则实数a的取值范围是
.参考答案:略12.、若函数的最小值为3,则实数=
参考答案:或略13.某学院的A,B,C三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取名学生.参考答案:40【考点】分层抽样方法.【专题】概率与统计.【分析】根据全校的人数和A,B两个专业的人数,得到C专业的人数,根据总体个数和要抽取的样本容量,得到每个个体被抽到的概率,用C专业的人数乘以每个个体被抽到的概率,得到结果.【解答】解:∵C专业的学生有1200﹣380﹣420=400,由分层抽样原理,应抽取名.故答案为:40【点评】本题考查分层抽样,分层抽样过程中,每个个体被抽到的概率相等,在总体个数,样本容量和每个个体被抽到的概率这三个量中,可以知二求一.14.设i是虚数单位,复数(a+3i)(1﹣i)是实数,则实数a=
.参考答案:3考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、复数为实数的充要条件即可得出.解答: 解:复数(a+3i)(1﹣i)=a+3+(3﹣a)i是实数,∴3﹣a=0,解得a=3.故答案为:3.点评:本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.15.己知x,y满足约束条件的最小值是
.参考答案:
16.下列说法:
①“”的否定是“”;
②函数的最小正周期是
③命题“函数处有极值,则”的否命题是真命题;
④上的奇函数,时的解析式是,则时的解析式为其中正确的说法是
。参考答案:略17.下面四个命题:①函数的最小正周期为;②在△中,若,则△一定是钝角三角形;③函数的图象必经过点(3,2);④的图象向左平移个单位,所得图象关于轴对称;⑤若命题“”是假命题,则实数的取值范围为; 其中所有正确命题的序号是
。参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分10分)选修:不等式选讲设函数(1)若的最小值为3,求的值;(2)求不等式的解集.参考答案:⑴因为因为,所以当且仅当时等号成立,故为所求.
4分⑵不等式即不等式,①当时,原不等式可化为即所以,当时,原不等式成立.②当时,原不等式可化为即所以,当时,原不等式成立.③当时,原不等式可化为即由于时所以,当时,原不等式成立.综合①②③可知:不等式的解集为
19.在数列中,点在直线上,数列满足条件:
(Ⅰ)求数列的通项公式;
(Ⅱ)若求成立的正整数的最小值.参考答案:解:(Ⅰ)依题意又而,数列是以2为首项,2为公比的等比数列.即得,为数列的通项公式.(Ⅱ)由上两式相减得由,即得,又当时,,当时,故使成立的正整数的最小值为5.略20.(本小题满分12分)某人向一目标射击,在处射击一次击中目标的概率为,击中目标得2分;在处射击一次击中目标的概率为,击中目标得1分.若他射击三次,第一次在处射击,后两次都在处射击,用表示他3次射击后得的总分,其分布列为:
⑴求及的数学期望;⑵求此人3次都选择在处向目标射击且得分高于2分的概率.参考答案:解:⑴由,得
……2分,,
……8分∴
…………10分⑵∵3次射击得分高于2分就是3次射击至少有两次击中目标,∴所求概率为.
…………12分略21.已知椭圆E:(a>b>0)的离心率是,过E的右焦点且垂直于椭圆长轴的直线与椭圆交于A,B两点,|AB|=2.(Ⅰ)求椭圆方程;(Ⅱ)过点P(0,)的动直线l与椭圆E交于的两点M,N(不是的椭圆顶点),是否存在实数λ,使+λ为定值?若存在,求出λ的值;若不存在,请说明理由.参考答案:【考点】直线与椭圆的位置关系.【分析】(1)由题意的离心率求得a2=2b2,椭圆的通径丨AB丨==2,即可求得a和b的值,求得椭圆的标准方程;(2)设直线l的方程,y=kx+,代入椭圆方程,利用韦达定理定理及向量数量积的坐标运算,表示出+λ=﹣(1﹣λ)+,则当λ=﹣2时,﹣(1﹣λ)+=﹣3,则存在实数λ,使+λ为定值【解答】解:(1)由椭圆的离心率e===,则a2=2b2,①则丨AB丨==2,则b2=a,②解得:a=2,b=,∴椭圆的标准方程为:;(2)当直线AB的斜率存在时,设直线AB的方程为y=kx+,M(x1,y1),N(x2,y2),联立,得(1+2k2)x2+4kx+2=0,△=(4k)2﹣4×(1+2k2)×2>0,解得:k2>,由韦达定理可知:x1+x2=﹣,x1x2=,从而,+λ=x1x2+y1y2+λ[x1x2+(y1﹣)(y2﹣)],=(1+λ)(1+k2)x1x2+k(x1+x2)+3,=(1+λ)(1+k2)×+k×(﹣)+3,=,=﹣(1﹣λ)+,∴当λ=﹣2时,﹣(1﹣λ)+=﹣3,此时+λ=﹣3,故存在常数λ=﹣2,使得+λ为定值﹣3.22.本小题满分12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直.∥,,,.(1)求证:;(2)求直线与平面所成角的正弦值;(3)线段上是否存在点,使//平面?若存在,求出;若不存在,说明理由.
参考答案:解:(1)证明:取中点,连结,.因为,所以.
因为四边形为直角梯形,,,所以四边形为正方形,所以.
所以平面.
所以.
………………4分(2)解法1:因为平面平面,且所以BC⊥平面则即为直线与平面所成的角设BC=a,则AB=2a,,所以则直角三角形CBE中,即直线与平面所成角的正弦值为.
………………8分解法2:因为平面平面,且,所以平面,所以.由两两垂直,建立如图所示的空间直角坐标系.因为三角形为等腰直角三角形,所以,设,则.所以,平面的一个法向量为.设直线与平面所成的角为,所以,
即直线与平面所成角的正弦值为.
………8分(3)解:存在点,且时,有//平面.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿色手绘风教学方法与课堂管理主题
- 小儿高热的护理小儿发热健康指导培训课件
- 百货业态的营销管理目录课件2
- 电气工程培训课件
- 2024-2025学年北京五十五中九年级(上)调研数学试卷(12月份)
- 山西省大同一中等重点中学2025届高三第二次调研语文试卷含解析
- 林下中草药合作种植协议书范本
- 恋爱期间不发生亲密关系的合同
- 房租合同法规
- 房屋租赁合同纠纷意见
- 2024年职业健康素养考试题库及答案
- (新北师大版2024)2024-2025学年七年级数学上学期期中测试卷
- 塑造宠物食品品牌
- 2024年山东省青岛市中考地理试题卷(含答案及解析)
- 美发保底劳务合同模板
- 《技术规程》范本
- 2024秋期国家开放大学本科《中国当代文学专题》一平台在线形考(形考任务一至六)试题及答案
- 期末(试题)-2024-2025学年人教PEP版(2024)英语三年级上册
- 第五单元简易方程 提升练习题(单元测试)-2024-2025学年五年级上册数学人教版
- 重点语法清单2024-2025学年人教版英语八年级上册
- NGS与感染性疾病医学课件
评论
0/150
提交评论