2023年湖南省常德市武陵区第一中学数学高二第二学期期末统考试题含解析_第1页
2023年湖南省常德市武陵区第一中学数学高二第二学期期末统考试题含解析_第2页
2023年湖南省常德市武陵区第一中学数学高二第二学期期末统考试题含解析_第3页
2023年湖南省常德市武陵区第一中学数学高二第二学期期末统考试题含解析_第4页
2023年湖南省常德市武陵区第一中学数学高二第二学期期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,,,则()A. B. C. D.2.函数的最小正周期为()A. B. C. D.3.已知椭圆E:x2a2+y24=1,设直线l:y=kx+1k∈R交椭圆A.mx+y+m=0 B.mx+y-m=0C.mx-y-1=0 D.mx-y-2=04.已知函数,则下面对函数的描述正确的是()A. B.C. D.5.若函数没有极值,则实数a的取值范围是()A. B. C. D.6.函数的定义域为()A. B.C. D.7.6名同学安排到3个社区,,参加志愿者服务,每个社区安排两名同学,其中甲同学必须到社区,乙和丙同学均不能到社区,则不同的安排方法种数为()A.5 B.6 C.9 D.128.用反证法证明命题“已知为非零实数,且,,求证中至少有两个为正数”时,要做的假设是()A.中至少有两个为负数 B.中至多有一个为负数C.中至多有两个为正数 D.中至多有两个为负数9.已知中,,则满足此条件的三角形的个数是()A.0 B.1 C.2 D.无数个10.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.如图是2018年9月到2019年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是()A.这半年中,网民对该关键词相关的信息关注度呈周期性变化B.这半年中,网民对该关键词相关的信息关注度不断减弱C.从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D.从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值11.己知复数z1=3+ai(a∈R),z2A.-1 B.1 C.10 D.312.若不等式对一切恒成立,则的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.两根相距的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于的概率是__________.14.当时,有,则__________.15.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于().16.抛物线的准线方程是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)有3名女生和5名男生,按照下列条件排队,求各有多少种不同的排队方法?(1)3名女生排在一起;(2)3名女生次序一定,但不一定相邻;(3)3名女生不站在排头和排尾,也互不相邻;(4)每两名女生之间至少有两名男生;(5)3名女生中,A,B要相邻,A,C不相邻.18.(12分)已知函数(是自然对数的底数).(1)当时,求函数在上的最大值和最小值;(2)当时,讨论函数的单调性.19.(12分)假设某种人寿保险规定,投保人没活过65岁,保险公司要赔偿10万元;若投保人活过65岁,则保险公司不赔偿,但要给投保人一次性支付4万元已知购买此种人寿保险的每个投保人能活过65岁的概率都为,随机抽取4个投保人,设其中活过65岁的人数为,保险公司支出给这4人的总金额为万元(参考数据:)(1)指出X服从的分布并写出与的关系;(2)求.(结果保留3位小数)20.(12分)已知函数.(1)求函数在区间上的最大值和最小值;(2)已知,求满足不等式的的取值范围.21.(12分)已知抛物线与椭圆有共同的焦点,过点的直线与抛物线交于两点.(Ⅰ)求抛物线的方程;(Ⅱ)若,求直线的方程.22.(10分)在直角坐标系中,倾斜角为的直线经过坐标原点,曲线的参数方程为(为参数).以点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求与的极坐标方程;(2)设与的交点为、,与的交点为、,且,求值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据条件,令,代入中并取相同的正指数,可得的范围并可比较的大小;由对数函数的图像与性质可判断的范围,进而比较的大小.【详解】因为令则将式子变形可得,因为所以由对数函数的图像与性质可知综上可得故选:A.【点睛】本题考查了指数式与对数式大小比较,指数幂的运算性质应用,对数函数图像与性质应用,属于基础题.2、B【解析】

先利用二倍角的余弦公式化简函数解析式,然后利用周期公式可求答案.【详解】函数的最小正周期为:本题正确选项:【点睛】本题考查三角函数的周期性及其求法,考查二倍角的余弦公式,属基础题.3、D【解析】

在直线l中取k值,对应地找到选项A、B、C中的m值,使得直线与给出的直线关于坐标轴或原点具有对称性得出答案。【详解】当直线l过点-1,0,取m=-1,直线l和选项A中的直线重合,故排除A;当直线l过点1,0,取m=-1,直线l和选项B中的直线关于y轴对称,被椭圆E截得的弦长相同,故排除B;当k=0时,取m=0,直线l和选项C中的直线关于x轴对称,被椭圆E截得的弦长相同,故排除C;直线l的斜率为k,且过点0,1,选项D中的直线的斜率为m,且过点0,-2,这两条直线不关于x轴、y轴和原点对称,故被椭圆E所截得的弦长不可能相等。故选:D。【点睛】本题考查直线与椭圆的位置关系,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法,属于中等题。4、B【解析】分析:首先对函数求导,可以得到其导函数是增函数,利用零点存在性定理,可以将其零点限定在某个区间上,结合函数的单调性,求得函数的最小值所满足的条件,利用不等式的传递性求得结果.详解:因为,所以,导函数在上是增函数,又,,所以在上有唯一的实根,设为,且,则为的最小值点,且,即,故,故选B.点睛:该题考查的是有关函数最值的范围,首先应用导数的符号确定函数的单调区间,而此时导数的零点是无法求出确切值的,应用零点存在性定理,将导数的零点限定在某个范围内,再根据不等式的传递性求得结果.5、A【解析】

由已知函数解析式可得导函数解析式,根据导函数不变号,函数不存在极值点,对讨论,可得答案.【详解】∵,∴,①当时,则,在上为增函数,满足条件;②当时,则,即当时,恒成立,在上为增函数,满足条件综上,函数不存在极值点的充要条件是:.故选:A.【点睛】本题考查的知识点是函数在某点取得极值的条件,本题是一道基础题.6、B【解析】

利用二次根式的性质和分式的分母不为零求出函数的定义域即可.【详解】由题意知,,解得且,所以原函数的定义域为.故选:B【点睛】本题考查函数定义域的求解;考查二次根式的性质和分式的分母不为零;考查运算求解能力;属于基础题.7、C【解析】分析:该题可以分为两类进行研究,一类是乙和丙之一在A社区,另一在B社区,另一类是乙和丙在B社区,计算出每一类的数据,然后求解即可.详解:由题意将问题分为两类求解:第一类,若乙与丙之一在甲社区,则安排种数为种;第二类,若乙与丙在B社区,则A社区还缺少一人,从剩下三人中选一人,另两人去C社区,故安排方法种数为种;故不同的安排种数是种,故选C.点睛:该题考查的是有关分类加法计数原理,在解题的过程中,对问题进行正确的分类是解题的关键,并且需要将每一类对应的数据正确算出.8、A【解析】分析:用反证法证明某命题时,应先假设命题的否定成立,而命题的否定为:“a、b、c中至少有二个为负数”,由此得出结论.详解:用反证法证明某命题时,应先假设命题的否定成立,而:“中至少有二个为正数”的否定为:“中至少有二个为负数”.故选A.点睛:本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面是解题的关键,着重考查了推理与论证能力.9、C【解析】由正弦定理得即即,所以符合条件的A有两个,故三角形有2个故选C点睛:此题考查学生灵活运用正弦定理化简求值,掌握正弦函数的图象与性质,会根据三角函数值求对应的角.10、D【解析】

选项A错,并无周期变化,选项B错,并不是不断减弱,中间有增强.C选项错,10月的波动大小11月分,所以方差要大.D选项对,由图可知,12月起到1月份有下降的趋势,所以去年12月份的平均值大于今年1月份的平均值.选D.11、B【解析】

根据复数的除法运算和纯虚数的概念求得.【详解】由已知得:z1z所以3-3a=09+a≠0,解得:故选B.【点睛】本题考查复数的除法运算和纯虚数的概念,属于基础题.12、C【解析】

本题是通过x的取值范围推导出a的取值范围,可先将a与x分别放于等式的两边,在通过x的取值范围的出a的取值范围。【详解】,因为所以所以,解得【点睛】本题主要考察未知字母的转化,可以先将需要求解的未知数和题目已给出未知数区分开来,再进行求解。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】在距绳子两段两米处分别取A,B两点,当绳子在线段AB上时(不含端点),符合要求,所以灯与两端距离都大于2m的概率为,故填.14、1【解析】

利用复数代数形式的乘除运算化简,复数相等的条件列式求解a值.【详解】∵(1﹣i)(a+i)=(a+1)+(1﹣a)i,∴1﹣a=0,即a=1.故答案为1.【点睛】本题考查复数代数形式的乘除运算,考查复数的分类,是基础题.15、【解析】试题分析:根据题意,记该选手恰好回答了4个问题就晋级下一轮为A,若该选手恰好回答了4个问题就晋级下一轮,必有第二个问题回答错误,第三、四个回答正确,第一个问题可对可错;有相互独立事件的概率乘法公式,可得P(A)=1×0.2×0.8×0.8=0.128,故答案为0.128.法二:根据题意,记该选手恰好回答了4个问题就晋级下一轮为A,若该选手恰好回答了4个问题就晋级下一轮,必有第二个问题回答错误,第三、四个回答正确,第一个问题可对可错,由此分两类,第一个答错与第一个答对;有相互独立事件的概率乘法公式,可得P(A)=0.8×0.2×0.8×0.8+0.2×0.2×0.8×0.8=0.2×0.8×0.8=0.128考点:相互独立事件的概率乘法公式16、【解析】分析:利用抛物线的准线方程为,可得抛物线的准线方程.详解:因为抛物线的准线方程为,所以抛物线的准线方程为,故答案为.点睛:本题考查抛物线的准线方程和简单性质,意在考查对基本性质的掌握情况,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)4320(2)6720(3)2880(4)2880(5)5760【解析】

(1)根据题意,用捆绑法分2步分析:①,3名女生看成一个整体,②,将这个整体与5名男生全排列,由分步计数原理计算可得答案;(2)根据题意,先计算8人排成一排的排法,由倍分法分析可得答案;(3)根据题意,分2步分析:①,将5名男生全排列,②,将3名女生安排在5名男生形成的空位中,由分步计数原理计算可得答案;(4)根据题意,分2种情况讨论:①,两名女生之间有3名男生,另两名女生之间有2名男生,②,任意2名女生之间都有2名男生,分别求出每种情况下的排法数目,由加法原理计算可得答案;(5)根据题意,分2种情况讨论:①,A、B、C三人相邻,则B在中间,A、C在两边,②,A、B、C三人不全相邻,分别求出每种情况下的排法数目,由加法原理计算可得答案.【详解】(1)根据题意,分2步分析:①,3名女生看成一个整体,考虑其顺序有A3②,将这个整体与5名男生全排列,有A6则3名女生排在一起的排法有6×720=4320种;(2)根据题意,将8人排成一排,有A8由于3名女生次序一定,则有A8(3)根据题意,分2步分析:①,将5名男生全排列,有A5②,除去两端,有4个空位可选,在其中任选3个,安排3名女生,有A4则3名女生不站在排头和排尾,也互不相邻的排法有120×24=2880种;(4)根据题意,将3名女生排成一排,有A33=6①,两名女生之间有3名男生,另两名女生之间有2名男生,将5名男生分成3、2的两组,分别安排在3名女生之间,有6×C②,任意2名女生之间都有2名男生,将5名男生分成2、2、1的三组,2个2人组安排在三名女生之间,1人安排在两端,有6×C则每两名女生之间至少有两名男生的排法有1440+1440=2880种;(5)根据题意,分2种情况分析:①,A、B、C三人相邻,则B在中间,A、C在两边,三人有A2将3人看成一个整体,与5名男生全排列,有A6则此时有2×720=1440种排法;②,A、B、C三人不全相邻,先将5名男生全排列,有A5将A、B看成一个整体,和C一起安排在5名男生形成的6个空位中,有720×A则3名女生中,A,B要相邻,A,C不相邻的排法有1440+4320=5760种排法.【点睛】本题主要考查了排列、组合的应用,涉及分类、分步计数原理,属于中档题.18、(1),(2)见解析【解析】分析:(1)当时,,,令,可得或,列表可求函数在上的最大值和最小值;(2)由题意,分类讨论可求函数的单调性.详解:(1)当时,,,令,可得或,则有:减极小值增极大值减因为,,所以,.(2),当时,,函数在上单调递增;当时,,当或时,,函数单调递增,当时,,函数单调递减;当时,,当或时,,函数单调递增,当时,,函数单调递减;综上所述,当时,在,上单调递增,在上单调递减;当时,在在上单调递增;当时,在,上单调递增,在上单调递减.点睛:本题考查利用导数研究函数的性质,属中档题.19、(1);;(2)【解析】

(1)先由题意可得,服从二项分布;再由题意得到,化简即可得出结果;(2)先由,根据(1)的结果,得到,进而可得,即可求出结果.【详解】(1)由题意得,服从二项分布,即,因为4个投保人中,活过65岁的人数为,则没活过65岁的人数为,因此,即.(2)由得,所以,所以=.所以约为.【点睛】本题主要考查二项分布的问题,熟记二项分布的概率计算公式即可,属于常考题型.20、(1)最小值为-1,最大值为8;(2)【解析】

(1)根据二次函数在区间上的单调性可求得答案;(2)根据为增函数可将不等式化为,再解一元二次不等式可得到答案.【详解】(1)因为在上递减,在上递增,所以时,取得最小值,最小值为,时,取得最大值,最大值为.(2)因为为增函数,且,所以不等式可化为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论