




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ElectronicTunnelingthroughDissipativeMolecularBridgesUriPeskin
DepartmentofChemistry,Technion-IsraelInstituteofTechnologyMusaAbu-Hilu(Technion)AlonMalka(Technion)ChenAmbor(Technion)MaytalCaspari(Technion)RoiVolkovich(Technion)DaryaBrisker(Technion)VikaKoberinski(Technion)Prof.ShammaiSpeiser(Technion)Thanking:OutlineMotivation:
Controlledelectrontransportinmoleculardevicesandinbiologicalsystems.Background:ETinDonor-Acceptorcomplexes:TheGoldenRule,theCondonapproximatonandthespin-bosonHamiltonian.ETinDonor-Bridge-Acceptorcomplexes:McConnell’sformulaforthetunnelingmatrixelements.Theproblem:Electronic-nuclearcouplingatthemolecularbridgeandthebreakdownoftheCondonapproximation.Themodelsystem:Generalizedspin-bosonHamiltoniansfordissipativethrough-bridgetunneling.Results:Theweakcouplinglimit:Langevin-Schroedingerformulation,simulationsandinterpretationofETthroughadissipativebridgeBeyondtheweakcouplinglimit:Ananalyticformulaforthetunnelingmatrixelementinthedeeptunnelingregime.Conclusions:Promotionoftunnelingthroughmolecularbarriersbyelectronic-nuclearcoupling.Theeffectofmolecularrigidity.Motivation:ElectronTransportThroughMoleculesMolecularElectronicsResonanttunnelingthroughmolecularjunctions
Tans,Devoret,Thess,Smally,Geerligs,Dekker,Nature(2019)Reichert,Ochs,Beckmann,Weber,Mayor,Lohneysen,Phys.Rev.Lett.(2019).
Long-rangeElectronTransportInNatureThePhotosyntheticReactionCenterDeep(off-resonant)tunnelingthroughmolecularbarriers
Electrontransferiscontrolledbymolecularbridges
Tunnelingpathwaybetweencytochromeb5andmethaemoglobinControlledtunneling
throughmolecules?MinorchangestothemolecularelectronicdensityHighsensitivity(exponential)tothemolecularparametersApotentialforarationaldesignbasedonchemicalknowledgeResonanttunnelingDeep(offresonant)tunnelingWhyOff-Resonant(deep)Tunneling?ElectronTransferinDonor-AcceptorPairsDonor
AcceptorElectronictunnelingmatrixelementNuclearfactor:Frank-CondonweighteddensityofstatesTheroleofelectronicnuclearcoupling?Thecaseofthroughbridgetunneling:Theory:ElectronTransferinDonor-AcceptorPairsTheelectronicHamiltonian:Diabaticelectronicbasisfunctions:TheHamiltonianmatrix:Theory:ElectronTransferinDonor-AcceptorPairsASpinBosonHamiltonian:TheHarmonicapproximation:Theory:ElectronTransferinDonor-AcceptorPairsTheCondonapproximationDonor
AcceptorThegoldenruleexpressionfortherateAnelectronictunnelingmatrixelementAnuclearfactorMcConnell(1961):Introducingasetofbridgeelectronicstates;ThedirecttunnelingmatrixelementvanishesDonor
AcceptorLongRangeElectronicTunnelingThedonorandacceptorsitesareconnectedviaaneffectivetunnelingmatrixelementthroughthebridgeMcConnell’s
Formula:
AtightbindingmodelThedeeptunnelingregime:
FirstorderperturbationtheoryAsimpleexpressionfor
theeffectivetunnelingmatrixelementTunneling
oscillationsatafrequency:
Superexchangedynamicsthrough
asymmetricuniformbridgeH.M.McConnell,J.Chem.Phys.35,508(1961)DeeptunnelingthroughamolecularbridgeTheroleofbridgenuclearmodes?ValidityoftheCondonapproximation?
Davis,RatnerandWasielewski(J.A.C.S.2019).
Molecules1-5Chargetransferisgatedbybridgevibrations
Electronicnuclearcouplingatthebridge:
RigidbridgesenablehighlyefficientelectronenergytransferLokan,Paddon-Row,Smith,LaRosa,GhigginoandSpeiser(J.A.C.S.2019).BreakdownoftheCondonapproximation!Structural(promoting)bridgemodes:Electronicallyactive(accepting)bridgemodes:Ageneralized“spin-boson”model:ThenuclearpotentialenergysurfacechangesatthebridgeelectronicsitesHarmonicnuclearmodesLineare-nuclearcouplinginthebridgemodesThee-nuclearcouplingisrestrictedtothebridgesitesADissipativeSuperexchangeModel:
Asymmetricuniformbridge
IntroducingnuclearmodeswithanOhmic()spectraldensity
Thenuclearfrequencies:10-500(1/cm)arelargerthanthetunnelingfrequency!!
andauniformelectronic-nuclearcoupling:
M.A-HiluandU.Peskin,Chem.Phys.296,231(2019).CoupledElectronic-NuclearDynamicsAmean-fieldapproximation:ThecoupledSCFequations:Mean-fields:TheLangevin-SchroedingerequationAnon-linear,nonMarkoviandissipationtermFluctuationsAtzerotemperature,R(t)vanishesInitialnuclearpositionandmomentumElectronicbridgepopulationU.PeskinandM.Steinberg,J.Chem.Phys.109,704(2019).NumericalSimulations:Weake-ncouplingThetunnelingfrequencyincreases!Thetunnelingissuppressed!Simulations:Stronge-nCouplingInterpretation:atime-dependentHamiltonianTheInstantaneouselectronicenergy:
Weakcoupling:EnergydissipationintonuclearvibrationslowersthebarrierforelectronictunnelingAtime-dependentMcConnellformulaInterpretation:atime-dependentHamiltonianTheInstantaneouselectronicenergy:
Weakcoupling:EnergydissipationintonuclearvibrationslowersthebarrierforelectronictunnelingStrongcoupling:“Irreversible”electronicenergydissipation
ResonantTunnelingNumericallyexactsimulationsforasinglebridgemodeTunnelingsuppression
atstrongcouplingTunnelingacceleration
atweakcoupling
Adissipative-acceptormodel:Theacceptorpopulation:DissipationleadstoaunidirectionalETThetunnelingrateIncreaseswithe-ncouplingatthebridge!Introducing
abridgemodeA.MalkaandU.Peskin,Isr.J.Chem.(2019).Adimensionlessmeasurefortheeffectiveelectronic-nuclearcoupling:Interpretation:NuclearpotentialenergysurfacesDeeptunneling=weakelectronicinter-sitecouplingEntangledelectronic-nucleardynamics
beyondtheweakcouplinglimitAsmallparameter:Thesymmetricuniformbridgemodel:M.A.-HiluandU.Peskin,submittedforpublication(2019).ARigorousFormulation
TheDonor/AcceptorHamiltonianTheBridge
HamiltonianThecouplingHamiltonian(purelyelectronic!)Introducingvibrationaleigenstates:Diagonalizingthetight-bindingoperator:Regardingtheelectroniccouplingasa(secondorder)perturbation
Intheabsenceofelectroniccouplingthegroundstateisdegenerate:Theenergysplittingtemperaturereads:Frank-CondonoverlapfactorsTheenergysplitting:Expandingthedenominatorsinpowersof
andkeepingtheleadingnonvanishingtermsgivesInterpretation:EffectiveelectroniccouplingEffectivebarrierfortunnelingMcConnell’sexpression:
Summationover
vibronictunnelingpathways:LowerbarrierfortunnelingMultiple“Dissipative”pathwaysTheeffectivetunnelingbarrierdecreasesAnexample(N=8)Thetunnelingfrequencyincreasesbyordersofmagnitudewithincreasingelectronicnuclearcoupling1/cm
The“slowelectron”adiabaticlimitConsideringonlythegroundnuclearvibrationalstate:Aconditionforincreasingthetunnelingfrequencybyincreasingelectronic-nuclearcoupling:Anexample(N=8)TheslowelectronapproximationSpectraldensitiesMolecularrigidity=smalldeviationsfromequilibrium configuration
Flexiblevs.RigidmolecularbridgesIncreasingrigidity
Aconsistencyconstraint:
Langevin-Schroedingersimulations:ThetunnelingfrequencyincreaseswithbridgerigidityArigoroustreatment:
The“slowelectron”limit
Rigidity=largerFrankCondonfactor!SummaryandConclusionsArigorouscalculationofelectronictunnelingfrequenciesbeyondtheweakelectronic-nuclearcouplinglimit,predictsaccelerationbyordersofmagnitudesforsomemolecularparametersAnanalyticalapproachwasintroducedandaformulawasderivedforcalculationsoftunnelingmatrixelementsinadissipativeMcConnellmodel.Acomparisonwithapproximatemethodsforstudyingopenquantumsystemsissuggested.Thewayforrationallydesigned,controlledelectrontransportin“moleculardevices”isstilllong…Theeffectofelectronic-nuclearcouplinginelectronicallyactivemolecularbridgeswasstudiedusinggeneralizedMcConnellmodelsincludingbridgevibrations.Mean-fieldLangevin-Schroedingersimula
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年农业灌溉用水高效管理经济效益研究报告
- 淘宝伴娘服租赁合同范本
- 洁净板采购合同协议范本
- 签约祛斑合同协议书模板
- 消防车进口采购合同范本
- 焊工技术入股协议合同书
- 顺义区劳务派遣合同范本
- 自动喷漆厂转让合同范本
- 美容院会费转让合同范本
- 江苏载货汽车租赁协议书
- 骨科降低卧床患者便秘发生率医院护理质量QCC改善案例
- 2025年上海市各区高三语文一模试题汇编之文言文二阅读(含答案)
- 低钠血症的中国专家共识2023解读
- 办公机器和设备出租行业现状分析及未来三至五年行业发展报告
- 金锭市场分析及投资价值研究报告
- 楼面找平层裂缝修复方案
- 五级人工智能训练师(初级)职业技能等级认定考试题库(含答案)
- 女性全生命周期健康管理系统(征求意见稿)
- 四川省成都市2024年小升初语文真题试卷及答案
- (高清版)JTG D81-2017 公路交通安全设施设计规范
- 尿道病损切除术术后护理
评论
0/150
提交评论