版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE第4页(共5页)一、函数、导数1、函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,若,则为增函数;若,则为减函数.2、函数的奇偶性对于定义域内任意的,都有,则是偶函数;对于定义域内任意的,都有,则是奇函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。3、函数在点处的导数的几何意义函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.4、几种常见函数的导数①;②;③;④;⑤;⑥;⑦;⑧5、导数的运算法则(1).(2).(3).6、会用导数求单调区间、极值、最值7、求函数的极值的方法是:解方程.当时:(1)如果在附近的左侧,右侧,那么是极大值;(2)如果在附近的左侧,右侧,那么是极小值.二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式,=.或.五、解析几何28、直线的五种方程(1)点斜式(直线过点,且斜率为).(2)斜截式(b为直线在y轴上的截距).(3)两点式()(、()).(4)截距式(分别为直线的横、纵截距,)(5)一般式(其中A、B不同时为0).29、两条直线的平行和垂直若,①;②.30、平面两点间的距离公式(A,B).31、点到直线的距离(点,直线:).32、直线与圆的位置关系直线与圆的位置关系有三种:;;.弦长=其中.六、立体几何33、证明直线与直线平行的方法(1)三角形中位线(2)平行四边形(一组对边平行且相等)34、证明直线与平面平行的方法(1)直线与平面平行的判定定理(证平面外一条直线与平面内的一条直线平行)(2)先证面面平行35、证明平面与平面平行的方法平面与平面平行的判定定理(一个平面内的两条相交直线分别与另一平面平行)36、证明直线与直线垂直的方法转化为证明直线与平面垂直37、证明直线与平面垂直的方法(1)直线与平面垂直的判定定理(直线与平面内两条相交直线垂直)(2)平面与平面垂直的性质定理(两个平面垂直,一个平面内垂直交线的直线垂直另一个平面)38、证明平面与平面垂直的方法平面与平面垂直的判定定理(一个平面内有一条直线与另一个平面垂直)39、柱体、椎体、球体的侧面积、表面积、体积计算公式圆柱侧面积=,表面积=圆椎侧面积=,表面积=(是柱体的底面积、是柱体的高).(是锥体的底面积、是锥体的高).球的半径是,则其体积,其表面积.40、异面直线所成角、直线与平面所成角、二面角的平面角的定义及计算41、点到平面距离的计算(定义法、等体积法)42、直棱柱、正棱柱、长方体、正方体的性质:侧棱平行且相等,与底面垂直。正棱锥的性质:侧棱相等,顶点在底面的射影是底面正多边形的中心。七、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度物联网平台与设备采购合同
- 2024年度医疗器械采购合同:高精度医疗设备购买
- 2024年度保温砂浆生产线设备采购及安装合同
- 2024年度校园数字化建设设计与施工合同
- 2024年度专利许可使用合同关键技术参数与权益分配
- 2024年度仓储服务合同的服务条款和责任规定
- 04版公共车位销售与管理合同
- 2024年度企业员工福利IC卡发放与管理合同
- 2024年度版权许可合同:电影版权转授许可协议
- 2024年度大连二手房地产估价服务合同
- 公共卫生与预防医学继续教育平台“大学习”活动线上培训栏目题及答案
- DZ∕T 0382-2021 固体矿产勘查地质填图规范(正式版)
- 人工智能生涯发展展示
- 家庭保险保障计划书
- 马克思主义经典著作选读智慧树知到课后章节答案2023年下四川大学
- 思想道德与法治课件:第四章 第一节 全体人民共同的价值追求则
- JGJ_T231-2021建筑施工承插型盘扣式钢管脚手架安全技术标准(高清-最新版)
- 洁净室施工组织设计方案方案范本
- 《初中英语课堂教学学困生转化个案研究》开题报告
- 钢筋桁架楼承板施工方案
- 国内外动画研究现状述评
评论
0/150
提交评论