版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市司竹中学高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合,那么(
)A.[2,4)
B.(-1,+∞)
C.[2,+∞)
D.(-1,2]参考答案:A,所以.2.已知且,则函数与的图象可能是()
A
B
C
D参考答案:B3.已知命题:所有素数都是偶数,则是(
)A.所有的素数都不是偶数
B.有些素数是偶数
C.存在一个素数不是偶数
D.存在一个素数是偶数参考答案:C略4.执行如图所示的程序框图,若输入的x的值为3,则输出的n的值为______.(A)(B)(C)(D)参考答案:B5.方程上有解,则的取值范围是(
)A.
B.
C.
D.参考答案:C6.已知向量,若,则的最小值为(
)
12
6
参考答案:C7.设函数,则函数是A.最小正周期为的奇函数
B.最小正周期为的偶函数
C.最小正周期为的奇函数
D.最小正周期为的偶函数参考答案:B8.如图,网格纸上小正方形的边长为,粗实线画出的是某四棱锥的三视图,则该几何体的体积为A. B. C. D.参考答案:C本题主要考查空间几何体的三视图、表面积与体积,考查了空间想象能力.由三视图可知,该几何体是以俯视图为底面、高为5的四棱锥,如图所示,则该几何体的体积V=9.如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其左视图的面积为()A.4 B. C.2 D.2参考答案:C【考点】简单空间图形的三视图.【分析】根据题意,直接按三视图的要求,画出左视图,依据数据求出面积.【解答】解:左视图为矩形,如图,故其面积为故选C.10.已知平面向量、满足||=||=1,?=,若向量满足|﹣+|≤1,则||的最大值为()A.1 B. C. D.2参考答案:D【考点】平面向量数量积的运算.【分析】通过向量的数量积的定义,设出向量的坐标,利用向量的坐标运算和向量的模的公式及几何意义,结合圆的方程即可得出最大值为圆的直径.【解答】解:由平面向量、满足||=||=1,?=,可得||?||?cos<,>=1?1?cos<,>=,由0≤<,>≤π,可得<,>=,设=(1,0),=(,),=(x,y),则|﹣+|≤1,即有|(+x,y﹣)|≤1,即为(x+)2+(y﹣)2≤1,故|﹣+|≤1的几何意义是在以(﹣,)为圆心,半径等于1的圆上和圆内部分,||的几何意义是表示向量的终点与原点的距离,而原点在圆上,则最大值为圆的直径,即为2.故选:D.二、填空题:本大题共7小题,每小题4分,共28分11.的展开式中的系数是___________.参考答案:【知识点】二项式定理
J3【答案解析】56
解析:的展开式的通项为:,当时,可得的系数为:,故答案为:56【思路点拨】写出的展开式的通项,当时,就得到含的项,再求其系数即可。12.已知抛物线与双曲线有相同的焦点,点是两曲线的一个交点,且⊥轴,则双曲线的离心率为
.
参考答案:略13.已知非零向量,满足||=||=|+|,则与2-夹角的余弦值为.参考答案:
【考点】平面向量数量积的运算.【分析】利用两个向量的加减法的法则,以及其几何意义,余弦定理,数形结合求得与夹角的余弦值.【解答】解:非零向量满足,不妨设=1,设与夹角为θ,如图所示:设=,=,=+,则OA=0B=0C=1,设=2=2,则=2﹣,∠ODA即为θ,△OAC和△OBC都是边长等于3的等边三角形.利用余弦定理可得BD==,cosθ==,故答案为:.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,余弦定理的应用,属于中档题.14.已知,与的夹角为,则在上的投影为
.参考答案:315.若锐角△ABC的面积为,且AB=5,AC=8,则BC等于. 参考答案:7【考点】余弦定理的应用. 【分析】利用三角形的面积公式求出A,再利用余弦定理求出BC. 【解答】解:因为锐角△ABC的面积为,且AB=5,AC=8, 所以, 所以sinA=, 所以A=60°, 所以cosA=, 所以BC==7. 故答案为:7. 【点评】本题考查三角形的面积公式,考查余弦定理的运用,比较基础. 16.记等差数列{an}的前n项和Sn,利用倒序求和的方法得:Sn=;类似的,记等比数列{bn}的前n项的积为Tn,且bn>0(n∈N+),试类比等差数列求和的方法,可将Tn表示成首项b1,末项bn与项数n的一个关系式,即公式Tn=.参考答案:
【考点】进行简单的合情推理;等比数列;等比数列的前n项和;类比推理.【分析】由等差和等比数列的通项和求和公式及类比推理思想可得结果,在运用类比推理时,通常等差数列中的求和类比等比数列中的乘积.【解答】解:在等差数列{an}的前n项和为Sn=,因为等差数列中的求和类比等比数列中的乘积,所以各项均为正的等比数列{bn}的前n项积Tn=(b1bn)故答案为:.17.从等腰直角△ABC的底边BC上任取一点D,则△ABD为锐角三角形的概率为
.参考答案:【考点】几何概型.【分析】根据△ABD为锐角三角形,确定D的位置,然后根据几何概型的概率公式即可得到结论.【解答】解:∵△ABC是等腰直角三角形,E为BC的中点,∴B=45°,当D位于E时,△ABD为直角三角形,∴当D位于线段EC上时,△ABD为锐角三角形,∴根据几何概型的概率公式可得△ABD为锐角三角形的概率为,故答案为:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分10分)某厂生产产品x件的总成本(万元),已知产品单价P(万元)与产品件数x满足:,生产100件这样的产品单价为50万元,产量定为多少件时总利润最大?参考答案:19.已知二阶矩阵M有特征值及对应的一个特征向量,并且矩阵M对应的变换将点变换成,求矩阵M。参考答案:设矩阵,则由条件得,从而,又,从而,联立,解之得,故20.设函数f(x)=|2x+3|+|x﹣1|.(Ⅰ)解不等式f(x)>4;(Ⅱ)若存在使不等式a+1>f(x)成立,求实数a的取值范围.参考答案:【考点】绝对值不等式的解法;函数恒成立问题.【分析】(Ⅰ)先求出f(x)的表达式,得到关于x的不等式组,解出即可;(Ⅱ)问题转化为:a+1>(f(x))min,求出f(x)的最小值,从而求出a的范围即可.【解答】解:(Ⅰ)∵f(x)=|2x+3|+|x﹣1|,∴f(x)=
…∴f(x)>4?或或…?x<﹣2或0<x≤1或x>1
…综上所述,不等式的解集为:(﹣∞,﹣2)∪(0,+∞)…(Ⅱ)若存在使不等式a+1>f(x)成立?a+1>(f(x))min…由(Ⅰ)知,时,f(x)=x+4,∴x=﹣时,(f(x))min=
…a+1>?a>…∴实数a的取值范围为(,+∞)….21.(本小题12分)在正三棱柱中,底面三角形ABC的边长为,侧棱的长为,D为棱的中点。①求证:∥平面②求二面角的大小③求点到平面的距离。参考答案:向量解法1)略
2)
3)22.近年来,某地区积极践行“绿水青山就是金山银山”的绿色发展理念,2012年年初至2018年年初,该地区绿化面积(单位:平方公里)的数据如下表:
年份2012201320142015201620172018年份代号t1234567绿化面积y2.93.33.64.44.85.25.9
(1)求关于的线性回归方程;(2)利用(1)中的回归方程,预测该地区2022年年初的绿化面积,并计算2017年年初至2022年年初,该地区绿化面积的年平均增长率约为多少.(附:回归直线的斜率与截距的最小二乘法估计公式分别为)参考答案:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 豪雅新乐学合同内容
- 工程类施工合同法条
- 2025年海口货运资格证考试口诀
- 山东能源设施建设合同
- 渔业设施个人承包施工合同
- 节能建筑招投标模板
- 运输合同中装卸义务解析
- 电子信息企业消防管理规章
- 保利影视基地招投标操作指南
- 旅游景点食堂租赁合同
- 2.0MWp屋顶太阳能分布式光伏发电项目监理大纲2
- 灌入式复合路面施工指南
- 2023级高数(上)试卷及答案
- 数控车床上下料机械手设计说明书
- 高中数学公开课优质课1.3.0探究与发现“杨辉三角”中的一些秘密【市一等奖】优质课
- 100KW分布式光伏电站设计方案
- 2010版GMP附录:计算机化系统整体及条款解读(完整精华版)
- 网吧企业章程范本
- 商业综合体、购物中心、百货商场商业运营项目收益测算模板
- 丙烯储罐毕业设计
- 水工建筑物水泥灌浆施工技术规范
评论
0/150
提交评论