湖北省孝感市环城高级中学高二数学理下学期期末试卷含解析_第1页
湖北省孝感市环城高级中学高二数学理下学期期末试卷含解析_第2页
湖北省孝感市环城高级中学高二数学理下学期期末试卷含解析_第3页
湖北省孝感市环城高级中学高二数学理下学期期末试卷含解析_第4页
湖北省孝感市环城高级中学高二数学理下学期期末试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省孝感市环城高级中学高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如表是某厂1﹣4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量y与月份x之间有线性相关关系,其线性回归方程是=﹣0.7x+,则=()月份x1234用水量y4.5432.5A.5.15 B.5.20 C.5.25 D.5.30参考答案:C【考点】线性回归方程.【专题】概率与统计.【分析】首先求出x,y的平均数,根据所给的线性回归方程知道的值,根据样本中心点满足线性回归方程,把样本中心点代入,得到关于的一元一次方程,解方程即可.【解答】解:=(1+2+3+4)=2.5,=(4.5+4+3+2.5)=3.5,将(2.5,3.5)代入线性回归直线方程是=0.7x+,可得3.5=﹣1.75+,故=5.25.故选:C.【点评】本题考查回归分析,考查样本中心点满足回归直线的方程,考查求一组数据的平均数,是一个运算量比较小的题目.2.已知复数,,若为纯虚数,则(

)A. B. C.2 D.参考答案:D【分析】由题,将复数,,代入化简,纯虚数可知实部为0,可求得a的值,可得,即可求得模长.【详解】因为复数,,则因为为纯虚数,所以此时故选D【点睛】本题考查了复数的知识,熟悉复数的化简和性质知识点是解题的关键,属于基础题.3.双曲线的渐近线方程是(

)A.

B.

C.

D.参考答案:C4.已知直线l过点(﹣1,0),l与圆C:(x﹣1)2+y2=3相交于A,B两点,则弦长的概率为()A. B. C. D.参考答案:C【考点】几何概型.【分析】先找出使弦长|AB|=2时的情况,再求直线与圆相切时的情形,根据几何概型的概率公式求解即可【解答】解:圆心C是(1,0)半径是,可知(﹣1,0)在圆外要使得弦长|AB|≥2,设过圆心垂直于AB的直线垂足为D,由半径是,可得出圆心到AB的距离是1,此时直线的斜率为,倾斜角为30°,当直线与圆相切时,过(﹣1,0)的直线与x轴成60°,斜率为,所以使得弦长的概率为:P==,故选:C.5.已知集合P={0,1,2},,则P∩Q=A.{0} B.{0,1}C.{1,2} D.{0,2}参考答案:B【分析】根据集合交集的概念,可直接得出结果.【详解】因为集合,,所以.故选B

6.设集合U={1,2,3,4,5},A={1,3,5},B={2,5},则A∩(?UB)等于()A.{2}B.{2,3}C.{3}D.{1,3}参考答案:D【分析】先求出集合B在全集中的补集,然后与集合A取交集.【解答】解:因为集合U={1,2,3,4,5},B={2,5},所以CUB={1,3,4},又A={1,3,5},所以A∩(CUB)={1,3,5}∩{1,3,4}={1,3}.故选D.【点评】本题考查了交集和补集运算,熟记概念,是基础题.7.计算机执行右边的程序段后,输出的结果是(

)A.

B.

C.

D.

参考答案:B8.已知命题p:“对?x∈R,?m∈R,使4x+m?2x+1=0”.若命题?p是假命题,则实数m的取值范围是()A.﹣2≤m≤2 B.m≥2 C.m≤﹣2 D.m≤﹣2或m≥2参考答案:C【考点】命题的否定;全称命题;命题的真假判断与应用.【专题】计算题.【分析】命题p是真命题,利用分离m结合基本不等式求解.【解答】解:由已知,命题?p是假命题,则命题p是真命题,由4x+m?2x+1=0得m=﹣≤﹣=﹣2,当且仅当x=0是取等号.所以m的取值范围是m≤﹣2故选C【点评】本题考查复合命题真假的关系,参数取值范围,考查转化、逻辑推理、计算能力.9.下表是关于x与y的一组数据,则y关于x的线性回归方程必过点(

)x0123y12.95.17A.(2,2) B.(1.5,2) C.(1.5,4) D.(1,2)参考答案:C【分析】根据线性回归方程经过样本中心点得解.【详解】由题得,所以样本中心点为.所以线性回归方程必过点.故选:C【点睛】本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.10.如图所示,已知椭圆方程为,为椭圆的左顶点,在椭圆上,若四边形为平行四边形,且,则椭圆的离心率为(

)A.

B.

C.

D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.椭圆的右焦点为F(c,0),上下顶点分别为A、B,直线AF交椭圆于另一点P,若PB的斜率为,则椭圆的离心率e=_______。参考答案:或设,则满足,即,则,的斜率之积为,因为,所以.又因为,所以,即,解得或.

12.已知双曲线的离心率为,则=_

__参考答案:413.已知向量=(0,2,1),=(﹣1,1,﹣2),则与的夹角的大小为.参考答案:【考点】空间向量的数量积运算.【分析】利用空间向量的数量积,即可求出两向量的夹角大小.【解答】解:∵向量=(0,2,1),=(﹣1,1,﹣2),∴?=0×(﹣1)+2×1+1×(﹣2)=0,∴⊥,∴与的夹角为.故答案为:.14.计算的值是_________。参考答案:2

15.如图,正方形ABCD所在平面与正方形ABEF所在平面成60°的二面角,则异面直线AD与BF所成角的余弦值是.参考答案:【考点】异面直线及其所成的角.【分析】由题意得,CB⊥AB,AB⊥BE.可得正方形ABCD所在平面与正方形ABEF的二面角即∠CBE=60°,同时也得AB⊥平面BCE,即AB⊥CE,即是EF⊥CE.进而求出CF、FB、BC,即可求出异面直线AD与BF所成角的余弦值.【解答】解:由题意得,CB⊥AB,AB⊥BE.可得正方形ABCD所在平面与正方形ABEF的二面角即∠CBE=60°,同时也得AB⊥平面BCE,即AB⊥CE,即三角形CEF为直角三角形和三角形CBE为等边三角形;即是EF⊥CE.设AB=1,则CE=1,CF=,FB=,利用余弦定理,得.故异面直线AD与BF所成角的余弦值是.16.

如图,已知平面,,则图中直角三角形的个数为________.参考答案:417.曲线(t为参数)与x轴交点的直角坐标是_________.参考答案:(2,0)略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知圆C的圆心坐标(1,1),直线l:x+y=1被圆C截得弦长为,(1)求圆C的方程;(II)从圆C外一点p(2,3)向圆引切线,求切线方程.参考答案:【考点】直线与圆相交的性质;直线与圆的位置关系.【分析】(I)设圆C的半径为r,根据圆心坐标写出圆的标准方程,利用点到直线的距离公式求出圆心到直线l的距离即为弦心距,然后根据垂径定理得到其垂足为弦的中点,由弦长的一半,圆心距及半径构成的直角三角形,根据勾股定理列出关于r的方程,求出方程的解即可得到r的值,从而确定圆C的方程;(II)当切线方程的斜率不存在时,显然得到x=2为圆的切线;当切线方程的斜率存在时,设出切线的斜率为k,由P的坐标和k写出切线方程,利用点到直线的距离公式求出圆心到所设直线的距离d,根据直线与圆相切,得到d等于圆的半径,列出关于k的方程,求出方程的解即可得到k的值,从而确定出切线的方程,综上,得到所求圆的两条切线方程.【解答】解:(I)设圆的方程为:(x﹣1)2+(y﹣1)2=r2因为圆心C到直线l的距离:d==,所以:r2=+=1,即r=1,圆的方程为:(x﹣1)2+(y﹣1)2=1;(II)当切线的斜率不存在时,显然x=2为圆的一条切线;当切线的斜率存在时,设切线的斜率为k,则切线方程为y﹣3=k(x﹣2),即:kx﹣y﹣2k+3=0由=1,解得k=,所以切线方程为y﹣3=(x﹣2),即3x﹣4y+6=0综上:所求的切线方程为x=2和3x﹣4y=6=0.19.古希腊有一著名的尺规作图题“倍立方问题”:求作一个正方体,使它的体积等于已知立方体体积的2倍,倍立方问题可以利用抛物线(可尺规作图)来解决,首先作一个通径为2a(其中正数a为原立方体的棱长)的抛物线C1,如图,再作一个顶点与抛物线C1顶点O重合而对称轴垂直的抛物线C2,且与C1交于不同于点O的一点P,自点P向抛物线C1的对称轴作垂线,垂足为M,可使以OM为棱长的立方体的体积为原立方体的2倍.(1)建立适当的平面直角坐标系,求抛物线C1的标准方程;(2)为使以OM为棱长的立方体的体积为原立方体的2倍,求抛物线C2的标准方程(只须以一个开口方向为例).参考答案:(1)以O为原点,OM为x轴正向建立平面直角坐标系,由题意,抛物线的通径为2a,所以标准方程为.(2)设抛物线,又由题意,,所以,代入,得:,解得:所以点代入得:,解得:所以抛物线为:.

20.某家俱公司生产甲、乙两种型号的组合柜,每种柜的制造白坯时间、油漆时间及有关数据如下:问该公司如何安排甲、乙二种柜的日产量可获最大利润,并且最大利润是多少?工艺要求产品甲产品乙生产能力/(台/天)制白坯时间/天612120油漆时间/天8464单位利润/元2024

参考答案:[解析]:设x,y分别为甲、乙二种柜的日产量,可将此题归纳为求如下线性目标函数Z=20x+24y的最大值.其中线性约束条件为

,由图及下表

(x,y)Z=20x+24y(0,10)240(0,0)0(8,0)160(4,8)272

Zmax=272

答:该公司安排甲、乙二种柜的日产量分别为4台和8台可获最大利润272元.

略21.己知,f(x)=1﹣lnx﹣x2

(1)求曲线f(x)在x=1处的切线方程;

(2)求曲线f(x)的切线的斜率及倾斜角α的取值范围.

参考答案:(1)解:∵f(x)=1﹣lnx﹣x2

∴f′(x)=﹣﹣x,

x=1时,f′(1)=﹣,f(1)=,

∴曲线f(x)在x=1处的切线方程为y﹣=﹣(x﹣1),即10x+8y﹣17=0;

(2)x>0,f′(x)=﹣﹣x≤﹣1,

∴曲线C在点P处切线的斜率为﹣﹣x,倾斜角α的取值范围为(,]

【考点】利用导数研究曲线上某点切线方程【分析】(1)求导数,确定切线的斜率,即可求曲线f(x)在x=1处的切线方程;(2)求导数,确定切线的斜率及倾斜角α的取值范围.

22.某网站对某市市民是否观看2018年“星光大道”总决赛直播的情况进行了一项问卷调查,得出如下表格:

男女看2018年“星光大道”总决赛直播60002000不看2018年“星光大道”总决赛直播20002000

(1)根据调查结果估计该市不看2018年“星光大道”总决赛直播的市民所占总市民的比例是多少?(2)能否有99%把握认为是否看2018年“星光大道”总决赛直播与性别有关?(3)如果该网站从参与问卷调查的看2018年“星光大道”总决赛直播市民中,抽取40名进行某项调查,请问采用什么方法合适?每个人被抽到的概率是多少?附:0.0500.0100.0013.8416.63510.828

参考答案:(1);(2)有99%把握认为看2018年“星光大道”总决赛直播与性别有关;(3)0.005.【分析】(1)由题意调查中,参与人数为12000(人),不看2018年“星光大道”总决赛直播的人数为4000,即可得到概率.(2)利用公式,求得的值,即可得到结论.(3)根据男女的比例进行分层抽样,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论