版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版九年级下册数学全册教学课件第二十一章
一元二次方程21.1一元二次方程学习目标1.理解一元二次方程的概念.(难点)2.根据一元二次方程的一般形式,确定各项系数.3.理解并灵活运用一元二次方程概念解决有关问题.(重点)导入新课复习引入没有未知数1.下列式子哪些是方程?2+6=82x+35x+6=22x+3y=8x-5<18代数式一元一次方程二元一次方程不等式分式方程2.什么叫方程?我们学过哪些方程?含有未知数的等式叫做方程.我们学过的方程有一元一次方程,二元一次方程(组)及分式方程,其中前两种方程是整式方程.3.什么叫一元一次方程?含有一个未知数,且未知数的次数是1的整式方程叫做一元一次方程.想一想:什么叫一元二次方程呢?问题1:有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周凸出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?100cm50cmx3600cm2解:设切去的正方形的边长为xcm,则盒底的长为(100-2x)cm,宽为(50-2x)cm,根据方盒的底面积为3600cm2,得化简,得讲授新课该方程中未知数的个数和最高次数各是多少?一元二次方程的概念问题2:要组织要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?解:根据题意,列方程:化简,得:该方程中未知数的个数和最高次数各是多少?问题3
在一块宽20m、长32m的矩形空地上,修筑宽相等的三条小路(两条纵向,一条横向,纵向与横向垂直),把矩形空地分成大小一样的六块,建成小花坛.如图要使花坛的总面积为570m2,问小路的宽应为多少?3220x1.若设小路的宽是xm,那么横向小路的面______m2,纵向小路的面积是
m2,两者重叠的面积是
m2.32x2.由于花坛的总面积是570m2.你能根据题意,列出方程吗?整理以上方程可得:思考:2×20x32×20-(32x+2×20x)+2x2=5702x2x2-36x+35=0③3220x想一想:还有其它的列法吗?试说明原因.(20-x)(32-2x)=57032-2x20-x3220观察与思考方程①、②、③都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?特点:①都是整式方程;②只含一个未知数;③未知数的最高次数是2.x2-36x+35=0③只含有一个未知数x的整式方程,并且都可以化为ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的方程叫做一元二次方程.ax2+bx
+c
=0(a
,
b
,
c为常数,
a≠0)ax2称为二次项,
a
称为二次项系数.
bx
称为一次项, b
称为一次项系数.
c
称为常数项.知识要点一元二次方程的概念
一元二次方程的一般形式是想一想为什么一般形式中ax2+bx+c=0要限制a≠0,b、c可以为零吗?当
a=0时bx+c=0当
a≠0,b=0时
,ax2+c=0当
a≠0,c
=0时
,ax2+bx=0当
a≠0,b
=c
=0时
,ax2
=0总结:只要满足a≠0,b,
c
可以为任意实数.典例精析例1
下列选项中,关于x的一元二次方程的是()C不是整式方程含两个未知数化简整理成x2-3x+2=0少了限制条件a≠0
判断一个方程是不是一元二次方程,首先看是不是整式方程;如是再进一步化简整理后再作判断.提示
判断下列方程是否为一元二次方程?(2)x3+x2=36(3)x+3y=36(5)x+1=0(1)x2+x=36例2:a为何值时,下列方程为一元二次方程?(1)ax2-x=2x2(2)(a-1)x|a|+1
-2x-7=0.解:(1)将方程式转化为一般形式,得(a-2)x2-x=0,所以当a-2≠0,即a≠2时,原方程是一元二次方程;
(2)由∣a
∣+1=2,且a-1≠0知,当a=-1时,原方程是一元二次方程.方法点拨:用一元二次方程的定义求字母的值的方法:根据未知数的最高次数等于2,列出关于某个字母的方程,再排除使二次项系数等于0的字母的值.变式:方程(2a-4)x2-2bx+a=0,(1)在什么条件下此方程为一元二次方程?(2)在什么条件下此方程为一元一次方程?解(1)当2a-4≠0,即a≠2时是一元二次方程(2)当a=2且b≠0时是一元一次方程一元一次方程一元二次方程一般式相同点不同点思考:一元一次方程与一元二次方程有什么区别与联系?ax=b(a≠0)ax2+bx+c=0(a≠0)整式方程,只含有一个未知数未知数最高次数是1未知数最高次数是2
例3:将方程3x(x-1)=5(x+2)化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数.解:去括号,得3x2-3x=5x+10.移项、合并同类项,得一元二次方程的一般形式3x2-8x-10=0.其中二次项是3x2,系数是3;一次项是-8x,系数是-8;常数项是-10.系数和项均包含前面的符号.注意一元二次方程的根
使一元二次方程等号两边相等的未知数的值叫作一元二次方程的解(又叫做根).练一练:下面哪些数是方程x2–x–6=0
的解?
-4,-3,-2,-1,0,1,2,3,4解:3和-2.你注意到了吗?一元二次方程可能不止一个根.一元二次方程的根
例4:已知a是方程x2+2x-2=0
的一个实数根,求2a2+4a+2018的值.解:由题意得方法点拨:求代数式的值,先把已知解代入,再注意观察,有时需运用到整体思想,求解时,将所求代数式的一部分看作一个整体,再用整体思想代入求值.当堂练习
1.
下列哪些是一元二次方程?√×√××√3x+2=5x-2x2=0(x+3)(2x-4)=x23y2=(3y+1)(y-2)x2=x3+x2-13x2=5x-12.填空:方程一般形式二次项系数一次项系数常数项-21313-540-53-24.已知方程5x²+mx-6=0的一个根为4,则m的值为_______.3.关于x的方程(k2-1)x2+
2(k-1)x+
2k+
2=0,当k
时,是一元二次方程.当k
时,是一元一次方程.≠±1=-14.(1)
如图,已知一矩形的长为200cm,宽150cm.现在矩形中挖去一个圆,使剩余部分的面积为原矩形面积的四分之三.求挖去的圆的半径xcm应满足的方程(其中π取3).解:设由于圆的半径为xcm,则它的面积为3x2
cm2.整理,得根据题意有,200cm150cm(2)
如图,据某市交通部门统计,前年该市汽车拥有量为75万辆,两年后增加到108万辆.求该市两年来汽车拥有量的年平均增长率x应满足的方程.解:该市两年来汽车拥有量的年平均增长率为x整理,得根据题意有,5.已知关于x的一元二次方程x2+ax+a=0的一个根是3,求a的值.解:由题意把x=3代入方程x2+ax+a=0,得32+3a+a=09+4a=04a=-96.若关于x的一元二次方程(m+2)x2+5x+m2-4=0有一个根为0,求m的值.二次项系数不为零不容忽视解:将x=0代入方程m2-4=0,解得m=±2.∵m+2≠0,∴m≠-2,综上所述:m=2.拓广探索
已知关于x的一元二次方程ax2+bx+c=0
(a≠0)一个根为1,求a+b+c的值.解:由题意得思考:1.若a+b+c=0,你能通过观察,求出方程ax2+bx+c=0(a≠0)的一个根吗?解:由题意得∴方程ax2+bx+c=0(a≠0)的一个根是1.2.若a-b+c=0,4a+2b+c=0,你能通过观察,求出方程ax2+bx+c=0(a≠0)的一个根吗?x=2课堂小结一元二次方程概念是整式方程;含一个未知数;最高次数是2.一般形式ax2+bx+c=0(a≠0)
其中(a≠0)是一元二次方程的必要条件;根使方程左右两边相等的未知数的值.学生课堂行为规范的内容是:按时上课,不得无故缺课、迟到、早退。遵守课堂礼仪,与老师问候。上课时衣着要整洁,不得穿无袖背心、吊带上衣、超短裙、拖鞋等进入教室。尊敬老师,服从任课老师管理。不做与课堂教学无关的事,保持课堂良好纪律秩序。听课时有问题,应先举手,经教师同意后,起立提问。上课期间离开教室须经老师允许后方可离开。上课必须按座位表就坐。要爱护公共财物,不得在课桌、门窗、墙壁上涂写、刻划。要注意保持教室环境卫生。离开教室要整理好桌椅,并协助老师关好门窗、关闭电源。谢谢大家第二十一章
一元二次方程21.2解一元二次方程第1课时学习目标1.会把一元二次方程降次转化为两个一元一次方程.(难点)2.运用开平方法解形如x2=p或(x+n)2=p(p≥0)的方程.(重点)1.如果
x2=a,则x叫做a的
.导入新课复习引入平方根2.如果
x2=a(a≥0),则x=
.3.如果
x2=64,则x=
.±84.任何数都可以作为被开方数吗?负数不可以作为被开方数.讲授新课
问题:一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?
解:设正方体的棱长为xdm,则一个正方体的表面积为6x2dm2,可列出方程10×6x2=1500,由此可得x2=25开平方得即x1=5,x2=-5.因棱长不能是负值,所以正方体的棱长为5dm.x=±5,直接开平方法试一试:
解下列方程,并说明你所用的方法,与同伴交流.(1)x2=4(2)x2=0(3)x2+1=0解:根据平方根的意义,得x1=2,x2=-2.解:根据平方根的意义,得x1=x2=0.解:根据平方根的意义,得
x2=-1,因为负数没有平方根,所以原方程无解.(2)当p=0
时,方程(I)有两个相等的实数根=0;(3)当p<0
时,因为任何实数x,都有x2≥0
,所以方程(I)无实数根.探究归纳一般的,对于可化为方程x2=p,(I)(1)当p>0
时,根据平方根的意义,方程(I)有两个不等的实数根,;利用平方根的定义直接开平方求一元二次方程的根的方法叫直接开平方法.归纳
例1
利用直接开平方法解下列方程:(1)x2=6;(2)
x2-900=0.解:(1)x2=6,直接开平方,得(2)移项,得x2=900.直接开平方,得x=±30,∴x1=30,x2=-30.典例精析在解方程(I)时,由方程x2=25得x=±5.由此想到:(x+3)2=5,②得对照上面方法,你认为怎样解方程(x+3)2=5探究交流于是,方程(x+3)2=5的两个根为上面的解法中,由方程②得到③,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程②转化为我们会解的方程了.解题归纳例2
解下列方程:⑴(x+1)2=2;
解析:第1小题中只要将(x+1)看成是一个整体,就可以运用直接开平方法求解.即x1=-1+,x2=-1-解:(1)∵x+1是2的平方根,∴x+1=解析:第2小题先将-4移到方程的右边,再同第1小题一样地解.例2
解下列方程:(2)(x-1)2-4=0;即x1=3,x2=-1.解:(2)移项,得(x-1)2=4.∵x-1是4的平方根,∴x-1=±2.∴x1=
,
x2=(3)12(3-2x)2-3=0.解析:第3小题先将-3移到方程的右边,再两边都除以12,再同第1小题一样地去解,然后两边都除以-2即可.解:(3)移项,得12(3-2x)2=3,两边都除以12,得(3-2x)2=0.25.∵3-2x是0.25的平方根,∴3-2x=±0.5.即3-2x=0.5,3-2x=-0.5解:方程的两根为解:方程的两根为例3
解下列方程:1.能用直接开平方法解的一元二次方程有什么特点?
如果一个一元二次方程具有x2=p或(x+n)2=p(p≥0)的形式,那么就可以用直接开平方法求解.2.任意一个一元二次方程都能用直接开平方法求解吗?请举例说明.探讨交流当堂练习
(C)
4(x-1)2=9,解方程,得4(x-1)=±3,
x1=;
x2=(D)
(2x+3)2=25,解方程,得2x+3=±5,x1=1;x2=-4
1.下列解方程的过程中,正确的是()(A)
x2=-2,解方程,得x=±(B)
(x-2)2=4,解方程,得x-2=2,x=4
D(1)方程x2=0.25的根是
.(2)方程2x2=18的根是
.(3)方程(2x-1)2=9的根是
.3.解下列方程:
(1)x2-81=0;(2)2x2=50;
(3)(x+1)2=4.
x1=0.5,x2=-0.5x1=3,x2=-3x1=2,x2=-12.填空:解:x1=9,x2=-9;解:x1=5,x2=-5;解:x1=1,x2=-3.4.(请你当小老师)下面是李昆同学解答的一道一元二次方程的具体过程,你认为他解的对吗?如果有错,指出具体位置并帮他改正.①②③④解:解:不对,从开始错,应改为解方程:挑战自我解:方程的两根为课堂小结直接开平方法概念步骤基本思路利用平方根的定义求方程的根的方法关键要把方程化成x2=p(p≥0)或(x+n)2=p(p≥0).一元二次方程两个一元一次方程降次直接开平方法学生课堂行为规范的内容是:按时上课,不得无故缺课、迟到、早退。遵守课堂礼仪,与老师问候。上课时衣着要整洁,不得穿无袖背心、吊带上衣、超短裙、拖鞋等进入教室。尊敬老师,服从任课老师管理。不做与课堂教学无关的事,保持课堂良好纪律秩序。听课时有问题,应先举手,经教师同意后,起立提问。上课期间离开教室须经老师允许后方可离开。上课必须按座位表就坐。要爱护公共财物,不得在课桌、门窗、墙壁上涂写、刻划。要注意保持教室环境卫生。离开教室要整理好桌椅,并协助老师关好门窗、关闭电源。谢谢大家第二十一章
一元二次方程21.2解一元二次方程第2课时学习目标1.了解配方的概念.2.掌握用配方法解一元二次方程及解决有关问题.(重点)3.探索直接开平方法和配方法之间的区别和联系.(难点)导入新课复习引入(1)9x2=1;(2)(x-2)2=2.2.下列方程能用直接开平方法来解吗?1.用直接开平方法解下列方程:(1)x2+6x+9=5;(2)x2+6x+4=0.把两题转化成(x+n)2=p(p≥0)的形式,再利用开平方讲授新课问题1.你还记得吗?填一填下列完全平方公式.(1)a2+2ab+b2=(
)2;(2)a2-2ab+b2=(
)2.a+ba-b探究交流配方的方法问题2.填上适当的数或式,使下列各等式成立.(1)x2+4x+
=(x+
)2(2)x2-6x+
=(x-
)2(3)x2+8x+
=(x+
)2(4)x2-x+
=(x-
)2你发现了什么规律?222323424二次项系数为1的完全平方式:
常数项等于一次项系数一半的平方.归纳总结想一想:x2+px+(
)2=(x+
)2配方的方法合作探究怎样解方程:x2+6x+4=0(1)问题1
方程(1)怎样变成(x+n)2=p的形式呢?解:x2+6x+4=0
x2+6x=-4移项
x2+6x+9=-4+9两边都加上9二次项系数为1的完全平方式:
常数项等于一次项系数一半的平方.用配方法解方程方法归纳在方程两边都加上一次项系数一半的平方.注意是在二次项系数为1的前提下进行的.问题2
为什么在方程x2+6x=-4的两边加上9?加其他数行吗?不行,只有在方程两边加上一次项系数一半的平方,方程左边才能变成完成平方x2+2bx+b2的形式.方程配方的方法:要点归纳
像上面这样通过配成完全平方式来解一元二次方程,叫做配方法.配方法的定义配方法解方程的基本思路把方程化为(x+n)2=p的形式,将一元二次方程降次,转化为一元一次方程求解.例1
解下列方程:解:(1)移项,得x2-8x=-1,配方,得x2-8x+42=-1+42,(x-4)2=15由此可得即配方,得由此可得二次项系数化为1,得解:移项,得2x2-3x=-1,即移项和二次项系数化为1这两个步骤能不能交换一下呢?配方,得因为实数的平方不会是负数,所以x取任何实数时,上式都不成立,所以原方程无实数根.解:移项,得二次项系数化为1,得为什么方程两边都加12?即思考1:用配方法解一元二次方程时,移项时要
注意些什么?思考2:用配方法解一元二次方程的一般步骤.移项时需注意改变符号.①移项,二次项系数化为1;②左边配成完全平方式;③左边写成完全平方形式;④降次;⑤解一次方程.一般地,如果一个一元二次方程通过配方转化成
(x+n)2=p.①当p>0时,则,方程的两个根为②当p=0时,则(x+n)2=0,x+n=0,开平方得方程的两个根为
x1=x2=-n.③当p<0时,则方程(x+n)2=p无实数根.规律总结例2.试用配方法说明:不论k取何实数,多项式
k2-4k+5的值必定大于零.解:k2-4k+5=k2-4k+4+1=(k-2)2+1因为(k-2)2≥0,所以(k-2)2+1≥1.所以k2-4k+5的值必定大于零.配方法的应用例3.若a,b,c为△ABC的三边长,且
试判断△ABC的形状.解:对原式配方,得由代数式的性质可知所以,△ABC为直角三角形.
1.方程2x2-3m-
x+m2+2=0有一根为x=0,则m的值为()A.1B.1C.1或2D.1或-22.应用配方法求最值.(1)2x2
-4x+5的最小值;(2)-3x2
+5x+1的最大值.练一练C解:原式=2(x-
1)2+3当x=1时有最小值3解:原式=-3(x-2)2-4当x=2时有最大值-4
类别
解题策略1.求最值或证明代数式的值为恒正(或负)对于一个关于x的二次多项式通过配方成a(x+m)2+n的形式后,(x+m)2≥0,n为常数,当a>0时,可知其最小值;当a<0时,可知其最大值.2.完全平方式中的配方如:已知x2-2mx+16是一个完全平方式,所以一次项系数一半的平方等于16,即m2=16,m=±4.3.利用配方构成非负数和的形式对于含有多个未知数的二次式的等式,求未知数的值,解题突破口往往是配方成多个完全平方式得其和为0,再根据非负数的和为0,各项均为0,从而求解.如:a2+b2-4b+4=0,则a2+(b-2)2=0,即a=0,b=2.例4.读诗词解题:
(通过列方程,算出周瑜去世时的年龄.)
大江东去浪淘尽,千古风流数人物。
而立之年督东吴,早逝英年两位数。十位恰小个位三,个位平方与寿符。哪位学子算得快,多少年华属周瑜?解:设个位数字为x,十位数字为(x-3)x1=6,x2=5x2-11x=-30x2-11x+5.52=-30+5.52(x-5.5)2=0.25x-5.5=0.5,或x-5.5=-0.5
x2=10(x-3)+x∴这个两位数为36或25,∴周瑜去世的年龄为36岁.∵周瑜30岁还攻打过东吴,1.解下列方程:(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12;(3)4x2-6x-3=0;(4)3x2+6x-9=0.解:x2+2x+2=0,(x+1)2=-1.此方程无解;解:x2-4x-12=0,(x-2)2=16.x1=6,x2=-2;解:x2+2x-3=0,(x+1)2=4.x1=-3,x2=1.当堂练习2.利用配方法证明:不论x取何值,代数式-x2-x-1的值总是负数,并求出它的最大值.解:-x2-x-1=-(x2+x+)+-1所以-x2-x-1的值必定小于零.当
时,-x2-x-1有最大值3.若,求(xy)z
的值.解:对原式配方,得由代数式的性质可知4.如图,在一块长35m、宽26m的矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分栽种花草,要使剩余部分的面积为850m2,道路的宽应为多少?
解:设道路的宽为xm,根据题意得(35-x)(26-x)=850,整理得x2-61x+60=0.解得x1=60(不合题意,舍去),x2=1.答:道路的宽为1m.5.已知a,b,c为△ABC的三边长,且
试判断△ABC的形状.解:对原式配方,得由代数式的性质可知所以,△ABC为等边三角形.
课堂小结配方法定义通过配成完全平方形式解一元二次方程的方法.步骤一移常数项;二配方[配上];三写成(x+n)2=p(p≥0);
四直接开平方法解方程.特别提醒:在使用配方法解方程之前先把方程化为x2+px+q=0的形式.应用求代数式的最值或证明学生课堂行为规范的内容是:按时上课,不得无故缺课、迟到、早退。遵守课堂礼仪,与老师问候。上课时衣着要整洁,不得穿无袖背心、吊带上衣、超短裙、拖鞋等进入教室。尊敬老师,服从任课老师管理。不做与课堂教学无关的事,保持课堂良好纪律秩序。听课时有问题,应先举手,经教师同意后,起立提问。上课期间离开教室须经老师允许后方可离开。上课必须按座位表就坐。要爱护公共财物,不得在课桌、门窗、墙壁上涂写、刻划。要注意保持教室环境卫生。离开教室要整理好桌椅,并协助老师关好门窗、关闭电源。谢谢大家第二十一章
一元二次方程21.2解一元二次方程第3课时学习目标1.经历求根公式的推导过程.(难点)2.会用公式法解简单系数的一元二次方程.(重点)3.理解并会计算一元二次方程根的判别式.4.会用判别式判断一元二次方程的根的情况.导入新课复习引入1.用配方法解一元二次方程的步骤有哪几步?2.如何用配方法解方程2x2+4x+1=0?导入新课问题:老师写了4个一元二次方程让同学们判断它们是否有解,大家都才解第一个方程呢,小红突然站起来说出每个方程解的情况,你想知道她是如何判断的吗?讲授新课任何一个一元二次方程都可以写成一般形式
ax2+bx+c=0
能否也用配方法得出它的解呢?合作探究
求根公式的推导用配方法解一般形式的一元二次方程
ax2+bx+c=0(a≠0).方程两边都除以a
解:移项,得配方,得即问题:接下来能用直接开平方解吗?即一元二次方程的求根公式特别提醒∵a≠0,4a2>0,当b2-4ac≥0时,∵a≠0,4a2>0,当b2-4ac
<0时,而x取任何实数都不能使上式成立.因此,方程无实数根.由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c确定.因此,解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0(a≠0),当b2-4ac≥0时,将a,b,c代入式子
就得到方程的根,这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法,由求根公式可知,一元二次方程最多有两个实数根.用公式法解一元二次方程的前提是:
1.必需是一般形式的一元二次方程:ax2+bx+c=0(a≠0);2.b2-4ac≥0.注意例1
用公式法解方程5x2-4x-12=0解:∵a=5,b=-4,c=-12,b2-4ac=(-4)2-4×5×(-12)=256>0.典例精析
公式法解方程例2
解方程:化简为一般式:解:即:这里的a、b、c的值是什么?例3
解方程:(精确到0.001).解:用计算器求得:例4
解方程:4x2-3x+2=0因为在实数范围内负数不能开平方,所以方程无实数根.解:要点归纳公式法解方程的步骤1.变形:化已知方程为一般形式;
2.确定系数:用a,b,c写出各项系数;3.计算:
b2-4ac的值;4.判断:若b2-4ac≥0,则利用求根公式求出;若b2-4ac<0,则方程没有实数根.两个不相等实数根
两个相等实数根没有实数根两个实数根判别式的情况
根的情况我们把b2-4ac叫做一元二次方程ax2+bx+c=0根的判别式,通常用符号“”表示,即=
b2-4ac.
>0
=0
<0
≥0一元二次方程根的判别式按要求完成下列表格:练一练
的值04根的情况有两个相等的实数根没有实数根有两个不相等的实数根3.判别根的情况,得出结论.1.化为一般式,确定a,b,c的值.要点归纳根的判别式使用方法2.计算的值,确定的符号.例5:已知一元二次方程x2+x=1,下列判断正确的是()
A.该方程有两个相等的实数根
B.该方程有两个不相等的实数根
C.该方程无实数根
D.该方程根的情况不确定解析:原方程变形为x2+x-1=0.∵b2-4ac=1-4×1×(-1)=5>0,∴该方程有两个不相等的实数根,故选B.B方法归纳判断一元二次方程根的情况的方法:利用根的判别式判断一元二次方程根的情况时,要先把方程转化为一般形式ax2+bx+c=0(a≠0).b2-4ac>0时,方程有两个不相等的实数根.b2-4ac=0时,方程有两个相等的实数根.b2-4ac<0时,方程无实数根.例6:若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>-1B.k>-1且k≠0C.k<1D.k<1且k≠0解析:由根的判别式知,方程有两个不相等的实数根,则b2-4ac>0,同时要求二次项系数不为0,即,k≠0.解得k>-1且k≠0,故选B.B例7:不解方程,判断下列方程的根的情况.(1)3x2+4x-3=0;(2)4x2=12x-9;(3)7y=5(y2+1).解:(1)3x2+4x-3=0,a=3,b=4,c=-3,
∴b2-4ac=32-4×3×(-3)=52>0.∴方程有两个不相等的实数根.(2)方程化为:4x2-12x+9=0,∴b2-4ac=(-12)2-4×4×9=0.∴方程有两个相等的实数根.例7:不解方程,判断下列方程的根的情况.(3)7y=5(y2+1).解:(3)方程化为:5y2-7y+5=0,∴b2-4ac=(-7)2-4×5×5=-51<0.∴方程有两个相等的实数根.1.解方程:x2+7x–18=0.解:这里a=1,b=7,c=-18.
∵b
2-4ac=72–4×1×(-18)=121>0,即x1=-9,x2=2.当堂练习2.解方程(x
-2)(1-3x)=6.解:去括号,得x–2-3x2+6x=6,化简为一般式3x2-7x+8=0,这里a=3,b=-7,c=8.
∵b2-4ac=(-7)2–4×3×8=49–96=-47<0,
∴原方程没有实数根.3.解方程:2x2
-
x+3=0解:这里a=2,b=-,c=3.∵b2-4ac=27-4×2×3=3>0,∴
即x1= x2=4.关于x的一元二次方程有两个实根,则m的取值范围是
.注意:一元二次方程有实根,说明方程可能有两个不等实根或两个相等实根两种情况.解:∴5.不解方程,判断下列方程的根的情况.(1)2x2+3x-4=0;(2)x2-x+=0;(3)x2-x+1=0.解:(1)2x2+3x-4=0,a=2,b=3,c=-4,
∴b2-4ac=32-4×2×(-4)=41>0.∴方程有两个不相等的实数根.(2)x2-x+=0,a=1,b=-1,c=.∴b2-4ac=(-1)2-4×1×=0.∴方程有两个相等的实数根.(3)x2-x+1=0,a=1,b=-1,c=1.∴b2-4ac=(-1)2-4×1×1=-3<0.∴方程无实数根.(3)x2-x+1=0.6.不解方程,判别关于x的方程的根的情况.解:所以方程有两个实数根.能力提升:
在等腰△ABC
中,三边分别为a,b,c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC
的周长.解:关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,所以Δ=b2-4ac=(b-2)2-4(6-b)=b2+8b-20=0.所以b=-10或b=2.将b=-10代入原方程得x2-8x+16=0,x1=x2=4;将b=2代入原方程得x2+4x+4=0,x1=x2=-2(舍去);所以△ABC
的三边长为4,4,5,其周长为4+4+5=13.课堂小结公式法求根公式步骤一化(一般形式);二定(系数值);三求(Δ值);
四判(方程根的情况);五代(求根公式计算).根的判别式b2-4ac务必将方程化为一般形式学生课堂行为规范的内容是:按时上课,不得无故缺课、迟到、早退。遵守课堂礼仪,与老师问候。上课时衣着要整洁,不得穿无袖背心、吊带上衣、超短裙、拖鞋等进入教室。尊敬老师,服从任课老师管理。不做与课堂教学无关的事,保持课堂良好纪律秩序。听课时有问题,应先举手,经教师同意后,起立提问。上课期间离开教室须经老师允许后方可离开。上课必须按座位表就坐。要爱护公共财物,不得在课桌、门窗、墙壁上涂写、刻划。要注意保持教室环境卫生。离开教室要整理好桌椅,并协助老师关好门窗、关闭电源。谢谢大家第二十一章
一元二次方程21.2解一元二次方程第4课时学习目标1.理解用因式分解法解方程的依据.2.会用因式分解法解一些特殊的一元二次方程.(重点)3.会根据方程的特点选用恰当的方法解一元二次方程.(难点)导入新课情境引入
我们知道ab=0,那么a=0或b=0,类似的解方程(x+1)(x-1)=0时,可转化为两个一元一次方程x+1=0或x-1=0来解,你能求(x+3)(x-5)=0的解吗?讲授新课引例:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过xs物体离地面的高度(单位:m)为10-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗(精确到0.01s)?分析:设物体经过xs落回地面,这时它离地面的高度为0,即10x-4.9x2=0①
因式分解法解一元二次方程解:解:∵a=4.9,b=-10,c=0.
∴
b2-4ac=(-10)2-4×4.9×0
=100.公式法解方程10x-4.9x2=0.配方法解方程10x-4.9x2=0.10x-4.9x2=0.因式分解如果a·
b=0,那么a=0或b=0.两个因式乘积为0,说明什么?或降次,化为两个一次方程解两个一次方程,得出原方程的根这种解法是不是很简单?10x-4.9x2=0①
x(10-4.9x)=0②
x=010-4.9x=0这种通过因式分解,将一个一元二次方程转化为两个一元一次方程来求解的方法叫做因式分解法.要点归纳因式分解法的概念因式分解法的基本步骤一移-----方程的右边=0;二分-----方程的左边因式分解;三化-----方程化为两个一元一次方程;四解-----写出方程两个解;简记歌诀:右化零左分解两因式各求解试一试:下列各方程的根分别是多少?(1)x(x-2)=0;
(1)x1=0,x2=2;
(2)(y+2)(y-3)=0;
(2)y1=-2,y2=3;(3)(3x+6)(2x-4)=0;
(3)x1=-2,x2=2;
(4)x2=x.(4)x1=0,x2=1.例1
解下列方程:解:(1)因式分解,得于是得x-2=0或x+1=0,x1=2,x2=-1.(2)移项、合并同类项,得因式分解,得
(2x+1)(2x-1)=0.于是得2x+1=0或2x-1=0,(x-2)(x+1)=0.典例精析例2
用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)(5x+1)2=1;分析:该式左右两边可以提取公因式,所以用因式分解法解答较快.解:化简
(3x-5)(x+5)=0.即3x-5
=0或
x+5
=0.分析:方程一边以平方形式出现,另一边是常数,可直接开平方法.解:开平方,得5x+1=±1.
解得,x1=0,x2=
灵活选用方法解方程(3)x2
-12x=4
;(4)3x2=4x+1;分析:二次项的系数为1,可用配方法来解题较快.解:配方,得
x2-12x+62=4+62,即(x-6)2=40.开平方,得
解得x1=,x2=分析:二次项的系数不为1,且不能直接开平方,也不能直接因式分解,所以适合公式法.解:化为一般形式
3x2-4x+1=0.
∵Δ=b2-4ac=28>0,
填一填:各种一元二次方程的解法及适用类型.拓展提升一元二次方程的解法适用的方程类型直接开平方法配方法公式法因式分解x2+px+q=0
(p2-4q≥0)(x+m)2=n(n≥0)ax2+bx+c=0(a≠0,b2-4ac≥0)(x+m)
(x+n)=01.一般地,当一元二次方程一次项系数为0时(ax2+c=0),应选用直接开平方法;2.若常数项为0(
ax2+bx=0),应选用因式分解法;3.若一次项系数和常数项都不为0(ax2+bx+c=0),先化为一般式,看一边的整式是否容易因式分解,若容易,宜选用因式分解法,不然选用公式法;4.不过当二次项系数是1,且一次项系数是偶数时,用配方法也较简单.要点归纳解法选择基本思路
①x2-3x+1=0;②3x2-1=0;
③-3t2+t=0;
④x2-4x=2;
⑤2x2-x=0;
⑥5(m+2)2=8;⑦3y2-y-1=0;
⑧2x2+4x-1=0;
⑨(x-2)2=2(x-2).
适合运用直接开平方法
;适合运用因式分解法
;适合运用公式法
;
适合运用配方法
.当堂练习1.填空⑥
①②③
④
⑤⑦⑧⑨2.下面的解法正确吗?如果不正确,错误在哪?并请改正过来.解方程(x-5)(x+2)=18.解:原方程化为:
(x-5)(x+2)=18.①由x-5=3,得x=8;②由x+2=6,得x=4;③所以原方程的解为x1=8或x2=4.解:原方程化为:x2
-3x
-28=0,
(x-7)(x+4)=0,
x1=7,x2=-4.3.解方程x(x+1)=2时,要先把方程化为
;再选择适当的方法求解,得方程的两根为x1=
,x2=
.x2+x-2=0-21解:化为一般式为因式分解,得x2-2x+1=0.(x-1)(x-1)=0.有x
-1=0或x
-1=0,x1=x2=1.解:因式分解,得(2x+11)(2x-11)=0.有2x+11=0或2x
-11=0,4.解方程:5.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为r,根据题意(r+5)2×π=2r2π.因式分解,得于是得答:小圆形场地的半径是课堂小结因式分解法概念步骤简记歌诀:右化零左分解两因式各求解如果a·b=0,那么a=0或b=0.原理将方程左边因式分解,右边=0.因式分解的方法有ma+mb+mc=m(a+b+c);a2±2ab+b2=(a±b)2;a2-b2=(a+b)(a-b).学生课堂行为规范的内容是:按时上课,不得无故缺课、迟到、早退。遵守课堂礼仪,与老师问候。上课时衣着要整洁,不得穿无袖背心、吊带上衣、超短裙、拖鞋等进入教室。尊敬老师,服从任课老师管理。不做与课堂教学无关的事,保持课堂良好纪律秩序。听课时有问题,应先举手,经教师同意后,起立提问。上课期间离开教室须经老师允许后方可离开。上课必须按座位表就坐。要爱护公共财物,不得在课桌、门窗、墙壁上涂写、刻划。要注意保持教室环境卫生。离开教室要整理好桌椅,并协助老师关好门窗、关闭电源。谢谢大家第二十一章
一元二次方程21.2解一元二次方程第5课时学习目标1.探索一元二次方程的根与系数的关系.(难点)2.不解方程利用一元二次方程的根与系数的关系解决问题.(重点)导入新课复习引入1.一元二次方程的求根公式是什么?想一想:方程的两根x1和x2与系数a,b,c还有其它关系吗?2.如何用判别式b2-4ac来判断一元二次方程根的情况?对一元二次方程:ax2+bx+c=0(a≠0)b2-4ac>0时,方程有两个不相等的实数根.b2-4ac=0时,方程有两个相等的实数根.b2-4ac<0时,方程无实数根.讲授新课
算一算
解下列方程并完成填空:(1)x2+3x-4=0;(2)x2-5x+6=0;(3)2x2+3x+1=0.一元二次方程两根关系x1x2x2+3x-4=0x2-5x+6=02x2+3x+1=0-4123-1x1+x2=-3x1·
x2=-4x1+x2=5x1·
x2=6探索一元二次方程的根与系数的关系猜一猜
(1)若一元二次方程的两根为x1,x2,则有x-x1=0,且x-x2=0,那么方程(x-x1)(x-x2)=0(x1,x2为已知数)的两根是什么?将方程化为x2+px+q=0的形式,你能看出x1,x2与p,q之间的关系吗?重要发现如果方程x2+px+q=0的两根是x1,x2,那么x1+x2=-p,x1·x2=q.(x-x1)(x-x2)=0.x2-(x1+x2)x+x1·x2=0,x2+px+q=0,x1+x2=-p,x1·x2=q.猜一猜
(2)通过上表猜想,如果一元二次方程ax2+bx+c=0(a≠0)的两个根分别是x1、x2,那么,你可以发现什么结论?证一证:一元二次方程的根与系数的关系(韦达定理)如果
ax2+bx+c=0(a≠0)的两个根为x1、x2,那么满足上述关系的前提条件b2-4ac≥0.归纳总结注意例1:利用根与系数的关系,求下列方程的两根之和、两根之积.(1)x2+7x+6=0;解:这里a=1,b=7,c=6.Δ=b2-4ac=72–4×1×6=25>0.∴方程有两个实数根.设方程的两个实数根是x1,x2,那么x1+x2=-7,
x1x2=6.一元二次方程的根与系数的关系的应用(2)2x2-3x-2=0.解:这里a=2,b=-3,c=-2.Δ=b2
-4ac=(-3)2–4×2×(-2)=25>0,∴方程有两个实数根.
设方程的两个实数根是x1,x2,那么x1+x2=,x1x2=-1.例2
已知方程5x2+kx-6=0的一个根是2,求它的另一个根及k的值.解:设方程的两个根分别是x1、x2,其中x1=2
.所以:x1·x2=2x2=即:x2=由于x1+x2=2+=得:k=-7.答:方程的另一个根是,k=-7.变式:已知方程3x2-18x+m=0的一个根是1,求它的另一个根及m的值.解:设方程的两个根分别是x1、x2,其中x1=1.所以:x1+x2=1+x2=6,即:x2=5
.
由于x1·x2=1×5=得:m=15.答:方程的另一个根是5,m=15.例3
不解方程,求方程2x2+3x-1=0的两根的平方和、倒数和.解:根据根与系数的关系可知:
设x1,x2为方程x2-4x+1=0的两个根,则:(1)x1+x2=
,(2)x1·x2=
,(3)
,
(4)
.411412练一练例4:设x1,x2是方程x2-2(k-1)x+k2=0的两个实数根,且x12+x22=4,求k的值.解:由方程有两个实数根,得Δ=4(k-1)2-4k2≥0
即-8k+4≥0.
由根与系数的关系得x1+x2=2(k-1),x1x2=k2.∴x12+x22=(x1+x2)2-2x1x2
=4(k-1)2-2k2=2k2-8k+4.由x12+x22=4,得2k2-8k+4=4,
解得
k1=0,
k2=4.经检验,k2=4不合题意,舍去.总结常见的求值:
求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.归纳当堂练习1.如果-1是方程2x2-x+m=0的一个根,则另一个根是___,m
=____.2.已知一元二次方程x2+px+q=0的两根分别为-2和
1,则:p=
,q=
.1-2-33.已知方程3x2-19x+m=0的一个根是1,求它的另一个根及m的值.解:将x=1代入方程中:
3
-19
+m=0.
解得m=16,设另一个根为x1,则:
1×
x1=∴x1=4.已知x1,x2是方程2x2+2kx+k-1=0的两个根,且(x1+1)(x2+1)=4;
(1)求k的值;(2)求(x1-x2)2的值.解:(1)根据根与系数的关系所以(x1+1)(x2+1)=x1x2+(x1+x2)+1=解得:k=-7;
(2)因为k=-7,所以则:5.设x1,x2是方程3x2+4x–3=0的两个根.利用根系数之间的关系,求下列各式的值.(1)(x1+1)(x2+1);(2)解:根据根与系数的关系得:(1)(x1+1)(x2+1)=x1x2+x1+x2+1=(2)6.当k为何值时,方程2x2-kx+1=0的两根差为1.解:设方程两根分别为x1,x2(x1>x2),则x1-x2=1∵
(x1-x2)2=(x1+x2)2-4x1x2=1拓展提升由根与系数的关系,得7.已知关于x的一元二次方程mx2-2mx+
m
-2=0
(1)若方程有实数根,求实数m的取值范围.(2)若方程两根x1,x2满足∣x1-x2∣=
1
求m的值.解:(1)方程有实数根∴m的取值范围为m>0(2)∵方程有实数根x1,x2∵
(x1-x2)2=(x1+x2)2-4x1x2=1解得m=8.经检验m=8是原方程的解.课堂小结根与系数的关系(韦达定理)内容如果一元二次方程
ax2+bx+c=0(a≠0)的两个根分别是x1、x2,那么应用学生课堂行为规范的内容是:按时上课,不得无故缺课、迟到、早退。遵守课堂礼仪,与老师问候。上课时衣着要整洁,不得穿无袖背心、吊带上衣、超短裙、拖鞋等进入教室。尊敬老师,服从任课老师管理。不做与课堂教学无关的事,保持课堂良好纪律秩序。听课时有问题,应先举手,经教师同意后,起立提问。上课期间离开教室须经老师允许后方可离开。上课必须按座位表就坐。要爱护公共财物,不得在课桌、门窗、墙壁上涂写、刻划。要注意保持教室环境卫生。离开教室要整理好桌椅,并协助老师关好门窗、关闭电源。谢谢大家第二十一章
一元二次方程21.3实际问题与一元二次方程第1课时学习目标1.会分析实际问题(传播问题)中的数量关系并会列一元二次方程.(重点)2.正确分析问题(传播问题)中的数量关系.(难点)3.会找出实际问题(传播问题等)中的相等关系并建模解决问题.讲授新课引例:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:设每轮传染中平均一个人传染了x个人.传染源记作小明,其传染示意图如下:合作探究传播问题与一元二次方程第2轮•••小明12x第1轮第1轮传染后人数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版智慧城市建设项目委托投标协议书范本3篇
- 2025版新企业股东协议书范本:企业创新发展计划3篇
- 2025版新车销售与二手车置换优惠套餐合同范本2篇
- 2025版学校食堂劳务承包与营养膳食研究开发协议3篇
- 2025年度个人房产买卖合同违约责任约定书
- 2025个人合伙企业股份清算转让协议3篇
- 2025版个人借款担保合同标准化模板4篇
- 2025年全球及中国水平运动输送机行业头部企业市场占有率及排名调研报告
- 2025-2030全球高牌号取向硅钢行业调研及趋势分析报告
- 2025-2030全球牵引型AGV行业调研及趋势分析报告
- 《徐霞客传正版》课件
- 江西硅博化工有限公司年产5000吨硅树脂项目环境影响评价
- 高端民用航空复材智能制造交付中心项目环评资料环境影响
- 贵州省黔东南州2024年七年级上学期数学期末考试试卷【附答案】
- 量子医学成像学行业研究报告
- DB22T 3268-2021 粮食收储企业安全生产标准化评定规范
- 办事居间协议合同范例
- 正念减压疗法详解课件
- 学校校本课程《英文电影鉴赏》文本
- 华为HCSA-Presales-IT售前认证备考试题及答案
- GB 30254-2024高压三相笼型异步电动机能效限定值及能效等级
评论
0/150
提交评论