版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年湖南省株洲市会文中学高一数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知数列{an}满足,,Sn是数列{an}的前n项和,则(
)A. B.C.数列是等差数列 D.数列{an}是等比数列参考答案:B分析:由,可知数列隔项成等比,再结合等比的有关性质即可作出判断.详解:数列满足,,当时,两式作商可得:,∴数列的奇数项,成等比,偶数项,成等比,对于A来说,,错误;对于B来说,,正确;对于C来说,数列等比数列,错误;对于D来说,数列是等比数列,错误,故选:B点睛:本题考查了由递推关系求通项,常用方法有:累加法,累乘法,构造等比数列法,取倒数法,取对数法等等,本题考查的是隔项成等比数列的方法,注意偶数项的首项与原数列首项的关系.2.已知数列{an}的通项公式为,则15是数列{an}的(
)A.第3项 B.第4项 C.第5项 D.第6项参考答案:C【分析】根据已知可得,解方程即可求解.【详解】由题意:,,解得或,,.故选:C【点睛】本题考查了数列的通项公式的应用,属于基础题.3.把函数的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,再把图象向左平移个单位,则所得图象的解析式为A.
B.
C.D.参考答案:C略4.下列计算中正确的是()A.=8
B.=10
C.
D.参考答案:B略5.某个几何体的三视图如图所示(单位:m),则该几何体的表面积(结果保留π)为
A.
B.
C.
D.参考答案:C球的半径为1,故半球的表面积的公式为,半球下底面表面积为π长方体的表面积为24,所以几何体的表面积为。
6.从装有2个红球和2个白球的袋内任取2个球,则互斥而不对立的两个事件是()A.至少有1个红球和全是白球B.至少有1个白球和全是白球C.恰有1个白球和恰有两个白球D.至少有1个白球和全是红球参考答案:C7.如果集合,那么(
)A.
B.
C.
D.参考答案:D略8.(5分)A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,则该球的体积为() A. B. 48π C. D. 参考答案:A考点: 球的体积和表面积;棱锥的结构特征;球内接多面体.专题: 计算题.分析: 由题意把A、B、C、D扩展为三棱柱如图,求出上下底面中心连线的中点与A的距离为球的半径,然后求出球的体积.解答: 由题意画出几何体的图形如图,把A、B、C、D扩展为三棱柱,上下底面中心连线的中点与A的距离为球的半径,AD=2AB=6,OE=3,△ABC是正三角形,所以AE==.AO==2.所求球的体积为:=.故选A.点评: 本题考查球的内接体与球的关系,考查空间想象能力,利用割补法结合球内接多面体的几何特征求出球的半径是解题的关键.9.已知集合,等于(
)A.
B.
C.
D.参考答案:B10.设有四个命题,其中真命题的个数是()①有两个平面互相平行,其余各面都是四边形的多面体一定是棱柱;②有一个面是多边形,其余各面都是三角形的多面体一定是棱锥;③用一个面去截棱锥,底面与截面之间的部分叫棱台;④侧面都是长方形的棱柱叫长方体.A.0个 B.1个 C.2个 D.3个参考答案:A【考点】2K:命题的真假判断与应用;L2:棱柱的结构特征;L3:棱锥的结构特征;L4:棱台的结构特征.【分析】利用棱柱,棱锥,楼台的定义判断选项的正误即可.【解答】解:①有两个平面互相平行,其余各面都是四边形的多面体一定是棱柱;不满足棱柱的定义,所以不正确;②有一个面是多边形,其余各面都是三角形的多面体一定是棱锥;不满足棱锥的定义,所以不正确;③用一个面去截棱锥,底面与截面之间的部分叫棱台;没有说明两个平面平行,不满足棱台定义,所以不正确;④侧面都是长方形的棱柱叫长方体.没有说明底面形状,不满足长方体的定义,所以不正确;正确命题为0个.故选:A.二、填空题:本大题共7小题,每小题4分,共28分11.给出下列四种说法:⑴函数与函数的定义域相同;⑵函数的值域相同;⑶函数均是奇函数;⑷函数上都是增函数。其中正确说法的序号是
。参考答案:(1)、(3)略12.函数是定义域为的奇函数,当时,,求当时,的解析式__________.参考答案:∵是奇函数,∴.时,.13.过点A(0,2)且倾斜角的正弦值是的直线方程为____
_.参考答案:3x-4y+8=0或3x+4y-8=014.已知锐角△ABC的外接圆的半径为1,,则△ABC的面积的取值范围为_____.参考答案:【分析】由已知利用正弦定理可以得到b=2sinB,c=2sin(﹣B),利用三角形面积公式,三角函数恒等变换的应用可求S△ABC═sin(2B﹣)+,由锐角三角形求B的范围,进而利用正弦函数的图象和性质即可得解.【详解】解:∵锐角△ABC的外接圆的半径为1,A=,∴由正弦定理可得:,可得:b=2sinB,c=2sin(﹣B),∴S△ABC=bcsinA=×2sinB×2sin(﹣B)×=sinB(cosB+sinB)=sin(2B﹣)+,∵B,C为锐角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案为:(1,].【点睛】本题主要考查了正弦定理,三角形面积公式,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了计算能力和转化思想,属于中档题.15.在△ABC中,面积,则∠C等于
.参考答案:45°略16.已知则
.参考答案:117.已知等比数列{an}是递增数列,Sn是{an}的前n项和,若,是方程的两个根,则__________.参考答案:63试题分析:因为是方程的两个根,且等比数列是递增数列,所以,即,则;故填63.考点:1.一元二次方程的根与系数的关系;2.等比数列.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知函数是定义在上的奇函数,当时,,(Ⅰ)求函数的解析式;(Ⅱ)已知恒成立,求常数的取值范围.参考答案:(1)因为函数是定义在上的奇函数,所以当时,=0;当时,,所以,又函数是奇函数,故所以因为当时,,当时,,当时,,,,此时,从而可知当时,,因为恒成立,所以,即的取值范围是略19.为了在夏季降温和冬季取暖时减少能源消耗,业主决定对房屋的屋顶和外墙喷涂某种新型隔热材料,该材料有效使用年限为20年.已知房屋外表喷一层这种隔热材料的费用为每毫米厚6万元,且每年的能源消耗费用H(万元)与隔热层厚度x(毫米)满足关系:.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)请解释的实际意义,并求f(x)的表达式;(2)当隔热层喷涂厚度为多少毫米时,业主所付的总费用f(x)最少?并求此时与不建隔热层相比较,业主可节省多少钱?参考答案:(1)(2)90【分析】(1)将建造费用和能源消耗费用相加得出f(x)的解析式;(2)利用基本不等式得出f(x)的最小值及对应的x的值,与不使用隔热材料的总费用比较得出结论.【详解】解:(1)表示不喷涂隔热材料时该房屋能源消耗费用为每年8万元,设隔热层建造厚度为毫米,则,(2)当,即时取等号所以当隔热层厚度为时总费用最小万元,如果不建隔热层,年业主将付能源费万元,所以业主节省万元.【点睛】本题考查了函数解析式的求解,函数最值的计算,考查分析问题解决问题的能力,属于中档题.20.如图,五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面ABF是等边三角形,棱EF//BC,且EF=BC.(I)证明:EO//面ABF;(Ⅱ)若EF=EO,证明:平面EFO平面ABE.参考答案:
21.(8分)已知,是其前项的和,求和.参考答案:(1)(2)
22.如图,已知平行四边形ABCD的三个顶点的坐标为A(﹣1,4),B(﹣2,﹣1),C(2,3).(1)求平行四边形ABCD的顶点D的坐标;(2)在△ACD中,求CD边上的高线所在直线方程.参考答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年GRC构件生产安装与装配式建筑节能环保合同2篇
- 2024版住建部规定建筑劳务分包合同3篇
- 2024版房地产经纪人佣金结算合同3篇
- 2024版汽车贷款抵押担保合同书3篇
- 2024年度中英文版物流运输企业员工聘用合同2篇
- 2024年度汽车租赁及运输合同5篇
- 2024版坑塘承包权质押合同范本3篇
- 2024年度产品销售与市场推广代理合同3篇
- 2024版个人专利挂靠公司授权使用合同范本3篇
- 2024版婚宴餐饮服务及食材供应合同范本2篇
- 2024-2025学年高二上学期期末数学试卷(基础篇)(含答案)
- 前程无忧测评题库及答案
- 《中韩关系演讲》课件
- 直系亲属股权无偿转让合同(2篇)
- 2023-2024学年广东省广州市白云区九年级(上)期末语文试卷
- 2024统编版初中八年级语文上册第六单元:大单元整体教学设计
- 五年级上册数学试题试卷(8篇)
- 2024-2025学年四年级科学上册第三单元《运动和力》测试卷(教科版)
- 学术规范与论文写作智慧树知到答案2024年浙江工业大学
- 2024年典型事故案例警示教育手册15例
- 2023年希望杯数学培训100题-二年级(含答案)
评论
0/150
提交评论