湘西市重点中学2023年高一数学第二学期期末教学质量检测试题含解析_第1页
湘西市重点中学2023年高一数学第二学期期末教学质量检测试题含解析_第2页
湘西市重点中学2023年高一数学第二学期期末教学质量检测试题含解析_第3页
湘西市重点中学2023年高一数学第二学期期末教学质量检测试题含解析_第4页
湘西市重点中学2023年高一数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,,则()A. B.或 C.或 D.2.设公差不为零的等差数列an的前n项和为Sn.若a2+A.10 B.11 C.12 D.133.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数C.方差 D.极差4.设是内任意一点,表示的面积,记,定义,已知,是的重心,则()A.点在内 B.点在内C.点在内 D.点与点重合5.已知正实数满足,则的最大值为()A.2 B. C.3 D.6.半径为的半圆卷成一个圆锥,它的体积是()A. B. C. D.7.化简结果为()A. B. C. D.8.设实数满足约束条件,则的最大值为()A. B.9 C.11 D.9.如图,矩形ABCD中,AB=2,AD=1,P是对角线AC上一点,,过点P的直线分别交DA的延长线,AB,DC于点M,E,N.若(m>0,n>0),则2m+3n的最小值是()A. B.C. D.10..若且,直线不通过()A.第一象限 B.第二象限 C.第三象限 D.第四象限,二、填空题:本大题共6小题,每小题5分,共30分。11.某单位有200名职工,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是12.设奇函数的定义域为R,且对任意实数满足,若当∈[0,1]时,,则____.13.观察下列等式:(1);(2);(3);(4),……请你根据给定等式的共同特征,并接着写出一个具有这个共同特征的等式(要求与已知等式不重复),这个等式可以是__________________.(答案不唯一)14.中,内角、、所对的边分别是、、,已知,且,,则的面积为_____.15.一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为.16.函数的最小正周期为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知平面向量(1)若,求;(2)若,求与夹角的余弦值.18.如图,已知圆:,点.(1)求经过点且与圆相切的直线的方程;(2)过点的直线与圆相交于、两点,为线段的中点,求线段长度的取值范围.19.李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据,如表所示:单价(千元)销量(百件)已知.(1)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程;(2)用(1)中所求的线性回归方程得到与对应的产品销量的估计值.(参考公式:线性回归方程中的估计值分别为)20.已知函数.(1)当时,判断并证明函数的奇偶性;(2)当时,判断并证明函数在上的单调性.21.的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,且,求面积的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用正弦定理求出,然后利用三角形的内角和定理可求出.【详解】由正弦定理得,得,,,则或.当时,由三角形的内角和定理得;当时,由三角形的内角和定理得.因此,或.故选B.【点睛】本题考查利用正弦定理和三角形的内角和定理求角,解题时要注意大边对大角定理来判断出角的大小关系,考查计算能力,属于基础题.2、C【解析】

由等差数列的前n项和公式Sn=n(a1+an)【详解】∵S13=117,∴13a1+a132=117,∴a1【点睛】本题考查等差数列的性质求和前n项和公式及等差数列下标和的性质,属于基础题。3、A【解析】

可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【详解】设9位评委评分按从小到大排列为.则①原始中位数为,去掉最低分,最高分,后剩余,中位数仍为,A正确.②原始平均数,后来平均数平均数受极端值影响较大,与不一定相同,B不正确③由②易知,C不正确.④原极差,后来极差可能相等可能变小,D不正确.【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.4、A【解析】解:由已知得,f(P)=(λ1,λ2,λ3)中的三个坐标分别为P分△ABC所得三个三角形的高与△ABC的高的比值,∵f(Q)=(1/2,1/3,1/6)∴P离线段AB的距离最近,故点Q在△GAB内由分析知,应选A.5、B【解析】

由,然后由基本不等式可得最大值.【详解】,当且仅当,即时,等号成立.∴所求最大值为.故选:B.【点睛】本题考查用基本不等式求最值,注意基本不等式求最值的条件:一正二定三相等.6、A【解析】

根据圆锥的底面圆周长等于半圆弧长可计算出圆锥底面圆半径,由勾股定理可计算出圆锥的高,再利用锥体体积公式可计算出圆锥的体积.【详解】设圆锥的底面圆半径为,高为,则圆锥底面圆周长为,得,,所以,圆锥的体积为,故选:A.【点睛】本题考查圆锥体积的计算,解题的关键就是要计算出圆锥底面圆的半径和高,解题时要从已知条件列等式计算,并分析出一些几何等量关系,考查空间想象能力与计算能力,属于中等题.7、A【解析】

根据指数幂运算法则进行化简即可.【详解】本题正确选项:【点睛】本题考查指数幂的运算,属于基础题.8、C【解析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】作出约束条件表示的可行域如图,化目标函数为,联立,解得,由图可知,当直线过点时,z取得最大值11,故选:C.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.9、C【解析】设,则又当且仅当时取等号,故选点睛:在利用基本不等式求最值的时候,要特别注意“拆,拼,凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数),“定”(不等式的另一边必须为定值),“等”(等号取得的条件)的条件才能应用,否则会出现错误.10、D【解析】

因为且,所以,,又直线可化为,斜率为,在轴截距为,因此直线过一二三象限,不过第四象限.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】试题分析:因为将全体职工随机按1~200编号,并按编号顺序平均分为40组,由分组可知,抽号的间隔为5,因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为1.考点:系统抽样.点评:本题考查系统抽样,在系统抽样过程中得到的样本号码是最规则的一组编号.12、【解析】

根据得到周期,再利用周期以及奇函数将自变量转变到给定区间计算函数值.【详解】因为,所以,所以,又因为,所以,则,故,又因为是奇函数,所以,则.【点睛】(1)形如的函数是周期函数,周期;(2)若要根据奇偶性求解分段函数的表达式,记住一个原则:“用未知表示已知”,也就是将自变量变形,利用已知范围和解析式求解.13、【解析】

观察式子特点可知,分子上两余弦的角的和是,分母上两个正弦的角的和是,据此规律即可写出式子【详解】观察式子规律可总结出一般规律:,可赋值,得故答案为:【点睛】本题考查归纳推理能力,能找出余角关系和补角关系是解题的关键,属于基础题14、【解析】

由正弦定理边角互化思想结合两角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面积公式可计算出的面积.【详解】,由边角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案为.【点睛】本题考查正弦定理边角互化思想的应用,考查利用余弦定理解三角形以及三角形面积公式的应用,解题时要结合三角形已知元素类型合理选择正弦、余弦定理解三角形,考查运算求解能力,属于中等题.15、【解析】

设球的半径为r,则,,,所以,故答案为.考点:圆柱,圆锥,球的体积公式.点评:圆柱,圆锥,球的体积公式分别为.16、【解析】

先将转化为余弦的二倍角公式,再用最小正周期公式求解.【详解】解:最小正周期为.故答案为【点睛】本题考查二倍角的余弦公式,和最小正周期公式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由题可得,解出,,进而得出答案.(2)由题可得,,再由计算得出答案,【详解】因为,所以,即解得所以(2)若,则所以,,,所以【点睛】本题主要考查的向量的模以及数量积,属于简单题.18、(1)或;(2).【解析】试题分析:(1)设直线方程点斜式,再根据圆心到直线距离等于半径求斜率;最后验证斜率不存在情况是否满足题意(2)先求点的轨迹:为圆,再根据点到圆上点距离关系确定最值试题解析:(1)当过点直线的斜率不存在时,其方程为,满足条件.当切线的斜率存在时,设:,即,圆心到切线的距离等于半径3,,解得.切线方程为,即故所求直线的方程为或.(2)由题意可得,点的轨迹是以为直径的圆,记为圆.则圆的方程为.从而,所以线段长度的最大值为,最小值为,所以线段长度的取值范围为.19、(1)(2),,,,,【解析】

(1)先计算,将数据代入公式得到,,线性回归方程为(2)利用(1)中所求的线性回归方程,代入数据分别计算得到答案.【详解】(1)由,可求得,故,,,,代入可得,,所以所求的线性回归方程为.(2)利用(1)中所求的线性回归方程可得,当时,;当时,;当时,;当时,;当时,;当时,.【点睛】本题考查了线性回归方程的计算,求估计值,意在考查学生的计算能力和对于回归方程公式的理解应用.20、(1)见解析;(2)见解析.【解析】

(1)将代入函数的解析式,利用函数的奇偶性定义来证明出函数的奇偶性;(2)将函数的解析式化为,然后利用函数单调性的定义证明出函数在上的单调性.【详解】(1)当时,,函数为上的奇函数.证明如下:,其定义域为,则,故函数为奇函数;(2)当时,函数在上单调递减.证明如下:,任取,则,又由,则,则有,即.因此,函数为上的减函数.【点睛】本题考查函数单调性与奇偶性的判定与证明,在利用定义证明函数的单调性与奇偶性时,要熟悉定义法证明函数奇偶性与单调性的基本步骤,考查逻辑推理能力与计算能力,属于中等题.21、(1);(2).【解析】

(1)利用正弦定理化简题中等式,得到关于B的三角方程,最后根据A,B,C均为三角形内角解得.(2)根据三角形面积公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论