2023届江苏省泰州市姜堰区数学高一下期末调研模拟试题含解析_第1页
2023届江苏省泰州市姜堰区数学高一下期末调研模拟试题含解析_第2页
2023届江苏省泰州市姜堰区数学高一下期末调研模拟试题含解析_第3页
2023届江苏省泰州市姜堰区数学高一下期末调研模拟试题含解析_第4页
2023届江苏省泰州市姜堰区数学高一下期末调研模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.袋中共有完全相同的4只小球,编号为1,2,3,4,现从中任取2只小球,则取出的2只球编号之和是偶数的概率为()A. B. C. D.2.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人最后一天走的路程为().A.24里 B.12里 C.6里. D.3里3.已知a、b、c分别是△ABC的内角A、B、C的对边,若,则的形状为()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形4.已知,,,,那么()A. B. C. D.5.下列结论正确的是()A.若则; B.若,则C.若,则 D.若,则;6.已知,所在平面内一点P满足,则()A. B. C. D.7.某班的60名同学已编号1,2,3,…,60,为了解该班同学的作业情况,老师收取了号码能被5整除的12名同学的作业本,这里运用的抽样方法是()A.简单随机抽样 B.系统抽样C.分层抽样 D.抽签法8.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布尺,则这位女子织布的天数是()A.2 B.3 C.4 D.19.已知等比数列的公比为正数,且,则()A. B. C. D.10.在等比数列{an}中,a2=8,a5=64,,则公比q为()A.2 B.3 C.4 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.12.若数列的前项和为,则该数列的通项公式为______.13.三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等,BAA1=CAA1=60°则异面直线AB1与BC1所成角的余弦值为____________.14.若,则的值为_______.15.___________.16.已知,若直线与直线垂直,则的最小值为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某医学院读书协会欲研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如图所示的频率分布直方图.该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(Ⅰ)已知选取的是1月至6月的两组数据,请根据2至5月份的数据,求出就诊人数关于昼夜温差的线性回归方程;(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(Ⅰ)中该协会所得线性回归方程是否理想?参考公式:回归直线的方程,其中,.18.已知函数.(1)求的单调递增区间;(2)求在区间上的最值.19.在△ABC中,角A,B,C的对边分别为a,b,c,且a2+c2﹣b2=mac,其中m∈R.(1)若m=1,a=1,c=,求△ABC的面积;(2)若m=,A=2B,a=,求b.20.已知函数的最小正周期为,且其图象的一个对称轴为,将函数图象上所有点的橫坐标缩小到原来的倍,再将图象向左平移个单位长度,得到函数的图象.(1)求的解析式,并写出其单调递增区间;(2)求函数在区间上的零点;(3)对于任意的实数,记函数在区间上的最大值为,最小值为,求函数在区间上的最大值.21.如图,在三棱锥中,平面平面,,点,,分别为线段,,的中点,点是线段的中点.求证:(1)平面;(2).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

先求出在编号为1,2,3,4的小球中任取2只小球的不同取法,再求出取出的2只球编号之和是偶数的不同取法,然后求概率即可得解.【详解】解:在编号为1,2,3,4的小球中任取2只小球,则有共6种取法,则取出的2只球编号之和是偶数的有共2种取法,即取出的2只球编号之和是偶数的概率为,故选:C.【点睛】本题考查了古典型概率公式,属基础题.2、C【解析】

由题意可知,每天走的路程里数构成以为公比的等比数列,由求得首项,再由等比数列的通项公式求得该人最后一天走的路程.【详解】解:记每天走的路程里数为,可知是公比的等比数列,由,得,解得:,,故选C.【点睛】本题考查等比数列的通项公式,考查了等比数列的前项和,是基础的计算题.3、A【解析】

将原式进行变形,再利用内角和定理转化,最后可得角B的范围,可得三角形形状.【详解】因为在三角形中,变形为由内角和定理可得化简可得:所以所以三角形为钝角三角形故选A【点睛】本题考查了解三角形,主要是公式的变形是解题的关键,属于较为基础题.4、C【解析】由于故,故,所以.由于,由于,所以,故.综上所述选.5、D【解析】

根据不等式的性质,结合选项,进行逐一判断即可.【详解】因,则当时,;当时,,故A错误;因,则或,故B错误;因,才有,条件不足,故C错误;因,则,则只能是,故D正确.故选:D.【点睛】本题考查不等式的基本性质,需要对不等式的性质非常熟练,属基础题.6、D【解析】

由平面向量基本定理及单位向量可得点在的外角平分线上,且点在的外角平分线上,,,在中,由正弦定理得得解.【详解】因为所以,因为方向为外角平分线方向,所以点在的外角平分线上,同理,点在的外角平分线上,,,在中,由正弦定理得,故选:.【点睛】本题考查了平面向量基本定理及单位向量,考查向量的应用,意在考查学生对这些知识的理解掌握水平.7、B【解析】由题意,抽出的号码是5,10,15,…,60,符合系统抽样的特点:“等距抽样”,故选B.8、B【解析】

将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.【详解】根据实际问题可以转化为等比数列问题,在等比数列中,公比,前项和为,,,求的值.因为,解得,,解得.故选B.【点睛】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助.9、D【解析】设公比为,由已知得,即,又因为等比数列的公比为正数,所以,故,故选D.10、A【解析】,选A.二、填空题:本大题共6小题,每小题5分,共30分。11、160【解析】

∵某个年级共有980人,要从中抽取280人,∴抽取比例为280980∴此样本中男生人数为27故答案为160.考点:本题考查了分层抽样的应用点评:掌握分层抽样的概念是解决此类问题的关键,属基础题12、【解析】

由,可得出,再令,可计算出,然后检验是否满足在时的表达式,由此可得出数列的通项公式.【详解】由题意可知,当时,;当时,.又不满足.因此,.故答案为:.【点睛】本题考查利用求,一般利用来计算,但要对是否满足进行检验,考查运算求解能力,属于中等题.13、【解析】

如图设设棱长为1,则,因为底面边长和侧棱长都相等,且所以,所以,,,设异面直线的夹角为,所以.14、【解析】

把已知等式展开利用二倍角余弦公式及两角和的余弦公式,整理后两边平方求解.【详解】解:由,得,,则,两边平方得:,即.故答案为.【点睛】本题考查三角函数的化简求值,考查倍角公式的应用,是基础题.15、【解析】

先将写成的形式,再根据诱导公式进行求解.【详解】由题意得:.故答案为:.【点睛】考查三角函数的诱导公式.,,,,.16、8【解析】

两直线斜率存在且互相垂直,由斜率乘积为-1求得等式,把目标式子化成,运用基本不等式求得最小值.【详解】设直线的斜率为,,直线的斜率为,,两条直线垂直,,整理得:,,等号成立当且仅当,的最小值为.【点睛】利用“1”的代换,转化成可用基本不等式求最值,考查转化与化归的思想.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)该协会所得线性回归方程是理想的【解析】试题分析:(1)根据所给的数据求出x,y的平均数,根据求线性回归系数的方法,求出系数,把和,代入公式,求出的值,写出线性回归方程;(2)根据所求的线性回归方程,预报当自变量为10和6时的值,把预报的值同原来表中所给的10和6对应的值作差,差的绝对值不超过2,得到线性回归方程理想.试题解析:解:(Ⅰ)由数据求得,,,由公式求得,所以,所以关于的线性回归方程为.(Ⅱ)当时,,;同样,当时,,.所以,该协会所得线性回归方程是理想的.点睛:求线性回归方程的步骤:(1)先把数据制成表,从表中计算出的值;(2)计算回归系数;(3)写出线性回归方程.进行线性回归分析时,要先画出散点图确定两变量具有线性相关关系,然后利用公式求回归系数,得到回归直线方程,最后再进行有关的线性分析.18、(1);(2)最大值为,最小值为.【解析】

(1)利用两角和的正弦公式以及二倍角的余弦公式、两角和的余弦公式将函数的解析式化简为,然后解不等式可得出函数的单调递增区间;(2)由,可计算出,然后由余弦函数的基本性质可求出函数在区间上的最大值和最小值.【详解】(1),解不等式,得,因此,函数的单调递增区间为;(2)当时,.当时,函数取得最大值;当时,函数取得最小值.【点睛】本题考查三角函数单调区间以及在定区间上最值的求解,解题时要利用三角恒等变换思想将三角函数的解析式化简,并借助正弦函数或余弦函数的基本性质进行求解,考查分析问题和解决问题的能力,属于中等题.19、(1);(2)【解析】

(1)当时,由余弦定理可求,利用同角三角函数基本关系式可求的值,根据三角形的面积公式即可求解.(2)当时,由余弦定理可求,利用同角三角函数基本关系式可求的值,根据二倍角的正弦函数公式可求的值,利用正弦定理可求的值.【详解】(1)当时,,,,,.(2)当时,,,,由正弦定理得:,.【点睛】本题主要考查了余弦定理,同角三角函数基本关系式,三角形的面积公式,二倍角的正弦函数公式,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.20、(1),单调递增区间为;(2)、、;(3).【解析】

(1)由函数的最小正周期求出的值,由图象的对称轴方程得出的值,从而可求出函数的解析式;(2)先利用图象变换的规律得出函数的解析式,然后在区间上解方程可得出函数的零点;(3)对分三种情况、、分类讨论,分析函数在区间上的单调性,得出和,可得出关于的表达式,再利用函数的单调性得出函数的最大值.【详解】(1)由题意可知,,.令,即,即函数的图象的对称轴方程为.由于函数图象的一条对称轴方程为,,,,,则,因此,.函数的单调递增区间为;(2)将函数的图象上所有点的橫坐标缩小到原来的倍,得到函数.再将所得函数的图象向左平移个单位长度,得到函数.令,即,化简得,得或.由于,当时,;当时,或.因此,函数在上的零点为、、;(3)当时,函数在上单调递增,在上单调递减,所以,,由于,,此时,;当时,函数在上单调递增,在上单调递减,所以,,由于,,此时,;当时,函数在区间上单调递减,所以,,,此时,.所以,.当时,函数单调递减,;当时,函数单调递增,此时;当时,,当时,.综上所述:.【点睛】本题考查利用三角函数性质求解析式、考查三角函数图象变换、三角函数的零点以及三角函数的最值,考查三角函数在动区间上的最值,要充分考查函数的单调性,结合三角函数的单调性求解,考查分类讨论数学思想,属于中等题.21、(1)见解析;(2)见解析【解析】

(1)连AF交BE于Q,连QO,推导出Q是△PAB的重心,从而FG∥QO,由此能证明FG∥平面EBO.(2)推导出BO⊥AC,从而BO⊥面PAC,进而BO⊥PA,再求出OE⊥PA,由此能证明PA⊥平面EBO,利用线面垂直的性质可证PA⊥BE.【详解】(1)连接AF交BE于Q,连接QO,因为E,F分别为边PA,PB的中点,所以Q为△PAB的重心,可得:2,又因为O为线段AC的中点,G是线段CO的中点,所以2,于是,所以FG∥QO,因为FG⊄平面EBO,QO

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论