版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,则在方向上的投影为()A. B. C. D.2.已知两点,,直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.或3.在等比数列中,若,则()A.3 B. C.9 D.134.半径为的半圆卷成一个圆锥,它的体积是()A. B. C. D.5.在三棱锥中,,二面角的大小为,则三棱锥的外接球的表面积为()A. B. C. D.6.在区间上随机取一个数x,的值介于0到之间的概率为()A. B. C. D.7.设和分别表示函数的最大值和最小值,则等于()A. B. C. D.8.在中,是边上一点,,且,则的值为()A. B. C. D.9.在中,角的对边分别为,若,则A.无解 B.有一解C.有两解 D.解的个数无法确定10.中国古代的“礼”“乐”“射”“御”“书”“数”合称“六艺”.某校国学社团准备于周六上午9点分别在6个教室开展这六门课程讲座,每位同学只能选择一门课程,则甲乙两人至少有人选择“礼”的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知两个数k+9和6-k的等比中项是2k,则k=________.12.某小区拟对如图一直角△ABC区域进行改造,在三角形各边上选一点连成等边三角形,在其内建造文化景观.已知,则面积最小值为____13.设变量满足条件,则的最小值为___________14.已知是等差数列,公差不为零,若,,成等比数列,且,则________15.已知函数,若,则__________.16.不等式的解集是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的单调减区间.(2)求函数的最大值并求取得最大值时的的取值集合.(3)若,求的值.18.已知函数.(1)求函数在上的单调递增区间;(2)将函数的图象向左平移个单位长度,再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象.求证:存在无穷多个互不相同的整数,使得.19.设全集为,集合,集合.(Ⅰ)求;(Ⅱ)若,求实数的取值范围.20.已知的三个顶点,,,其外接圆为圆.(1)求圆的方程;(2)若直线过点,且被圆截得的弦长为,求直线的方程;(3)对于线段上的任意一点,若在以为圆心的圆上都存在不同的两点,,使得点是线段的中点,求圆的半径的取值范围.21.已知公差不为的等差数列满足.若,,成等比数列.(1)求的通项公式;(2)设,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】在方向上的投影为,选A.2、D【解析】
作出示意图,再结合两点间的斜率公式,即可求得答案.【详解】,,又直线过点且与线段相交,作图如下:则由图可知,直线的斜率的取值范围是:或.故选:D【点睛】本题借直线与线段的交点问题,考查两点间的斜率公式,考查理解辨析能力,属于中档题.3、A【解析】
根据等比数列性质即可得解.【详解】在等比数列中,,,所以,所以,.故选:A【点睛】此题考查等比数列的性质,根据性质求数列中的项的关系,关键在于熟练掌握相关性质,准确计算.4、A【解析】
根据圆锥的底面圆周长等于半圆弧长可计算出圆锥底面圆半径,由勾股定理可计算出圆锥的高,再利用锥体体积公式可计算出圆锥的体积.【详解】设圆锥的底面圆半径为,高为,则圆锥底面圆周长为,得,,所以,圆锥的体积为,故选:A.【点睛】本题考查圆锥体积的计算,解题的关键就是要计算出圆锥底面圆的半径和高,解题时要从已知条件列等式计算,并分析出一些几何等量关系,考查空间想象能力与计算能力,属于中等题.5、D【解析】
取AB中点F,SC中点E,设的外心为,外接圆半径为三棱锥的外接球球心为,由,在四边形中,设,外接球半径为,则则可求,表面积可求【详解】取AB中点F,SC中点E,连接SF,CF,因为则为二面角的平面角,即又设的外心为,外接圆半径为三棱锥的外接球球心为则面,由在四边形中,设,外接球半径为,则则三棱锥的外接球的表面积为故选D【点睛】本题考查二面角,三棱锥的外接球,考查空间想象能力,考查正弦定理及运算求解能力,是中档题6、A【解析】因为,若,则,,故选A.7、C【解析】
根据余弦函数的值域,确定出的最大值和最小值,即可计算出的值.【详解】因为的值域为,所以的最大值,所以的最小值,所以.故选:C.【点睛】本题考查余弦型函数的最值问题,难度较易.求解形如的函数的值域,注意借助余弦函数的有界性进行分析.8、D【解析】
根据,用基向量表示,然后与题目条件对照,即可求出.【详解】由在中,是边上一点,,则,即,故选.【点睛】本题主要考查了平面向量基本定理的应用及向量的线性运算.9、C【解析】
求得,根据,即可判定有两解,得到答案.【详解】由题意,因为,又由,且,所以有两解.【点睛】本题主要考查了三角形解的个数的判定,以及正弦定理的应用,着重考查了推理与运算能力,属于基础题.10、D【解析】
甲乙两人至少有人选择“礼”的对立事件是甲乙两人都不选择“礼”,求出后者的概率即可【详解】由题意,甲和乙不选择“礼”的概率是,且相互独立所以甲乙两人都不选择“礼”的概率是所以甲乙两人至少有人选择“礼”的概率是故选:D【点睛】当遇到“至多”“至少”型题目时,一般用间接法求会比较简单,即先求出此事件的对立事件的概率,然后即可得出原事件的概率.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】由已知得(2k)2=(k+9)(6-k),k∈N*,∴k=3.12、【解析】
设,然后分别表示,利用正弦定理建立等式用表示,从而利用三角函数的性质得到的最小值,从而得到面积的最小值.【详解】因为,所以,显然,,设,则,且,则,所以,在中,由正弦定理可得:,求得,其中,则,因为,所以当时,取得最大值1,则的最小值为,所以面积最小值为,【点睛】本题主要考查了利用三角函数求解实际问题的最值,涉及到正弦定理的应用,属于难题.对于这类型题,关键是能够选取恰当的参数表示需求的量,从而建立相关的函数,利用函数的性质求解最值.13、-1【解析】
根据线性规划的基本方法求解即可.【详解】画出可行域有:因为.根据当直线纵截距最大时,取得最小值.由图易得在处取得最小值.故答案为:【点睛】本题主要考查了线性规划的基本运用,属于基础题.14、【解析】
根据题设条件,得到方程组,求得,即可得到答案.【详解】由题意,数列是等差数列,满足,,成等比数列,且,可得,即且,解得,所以.故答案为:.【点睛】本题主要考查了等差数列的通项公式,以及等比中项的应用,其中解答中熟练利用等差数列的通项公式和等比中项公式,列出方程组求解是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解析】
由三角函数的辅助角公式化简,关键需得出辅助角的正切值,再由函数的最大值求解.【详解】由三角函数的辅助公式得(其中),因为所以,所以,所以,,所以,故填:【点睛】本题考查三角函数的辅助角公式,属于基础题.16、【解析】
因为,且抛物线开口方向向上,所以,不等式的解集是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2)最大值是2,取得最大值时的的取值集合是.(3)【解析】
(1)利用三角恒等变换化简的解析式,再利用正弦函数的单调性,求得函数的单调区间;(2)根据的解析式以及正弦函数的最值,求得函数的最大值,以及取得最大值时的的取值集合;(3)根据题设条件求得,再利用二倍角的余弦公式求的值.【详解】(1),令,解得,所以的单调递减区间为;(2)由(1)知,故的最大值为2,此时,,解得,所以的最大值是2,取得最大值时的的取值集合是;(3),即,所以,所以.【点睛】本题主要考查三角函数的恒等变换,考查正弦型函数的图象和性质,熟练掌握正弦型函数的图象和性质是答题关键,属于中档题.18、(1)单调递增区间为;(2)见解析.【解析】
(1)利用二倍角的降幂公式以及辅助角公式可将函数的解析式化简为,然后求出函数在上的单调递增区间,与定义域取交集可得出答案;(2)利用三角函数图象变换得出,解出不等式的解集,可得知对中的任意一个,每个区间内至少有一个整数使得,从而得出结论.【详解】(1).令,解得,所以,函数在上的单调递增区间为,,因此,函数在上的单调递增区间为;(2)将函数的图象向左平移个单位长度,得到函数的图象,再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象,由,对于中的任意一个,区间长度始终为,大于,每个区间至少含有一个整数,因此,存在无穷多个互不相同的整数,使得.【点睛】本题考查正弦型三角函数单调区间的求解,同时也考查了利用三角函数图象变换求函数解析式,以及三角不等式整数解的个数问题,考查运算求解能力,属于中等题.19、(Ⅰ)(Ⅱ)【解析】
(1)化简集合,按并集的定义,即可求解;(2)得,结合数轴,确定集合端点位置,即可求解.【详解】解:(Ⅰ)集合,集合,∴;(Ⅱ)由,且,∴,由题意知,∴,解得,∴实数的取值范围是.【点睛】本题考查集合间的运算,考查集合的关系求参数,属于基础题.20、(1)(2)或(3)【解析】
试题分析:(1)借助题设条件直接求解;(2)借助题设待定直线的斜率,再运用直线的点斜式方程求解;(3)借助题设建立关于的不等式,运用分析推证的方法进行求解.试题解析:(1)的面积为2;(2)线段的垂直平分线方程为,线段的垂直平分线方程为,所以外接圆圆心,半径,圆的方程为,设圆心到直线的距离为,因为直线被圆截得的弦长为2,所以.当直线垂直于轴时,显然符合题意,即为所求;当直线不垂直于轴时,设直线方程为,则,解得,综上,直线的方程为或.(3)直线的方程为,设,,因为点是线段的中点,所以,又,都在半径为的圆上,所以因为关于,的方程组有解,即以为圆心,为半径的圆与以为圆心,为半径的圆有公共点,所以,又,所以对成立.而在上的值域为,所以且.又线段与圆无公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 方式采购合同范本3篇
- 房屋买卖居间合同注意事项3篇
- 改扩建工程施工合同的安全生产3篇
- 招标采购合同管理实践3篇
- 新编股份转让协议合同范本模板3篇
- 帆船出租协议范式3篇
- 政务信息化项目招标指南3篇
- 餐饮摊位租赁合同
- 旅馆租赁合同样式
- 地下工程挖机操作手聘用合同
- 体检营销话术与技巧培训
- 华电笔试题库
- 医学教材 产科快速康复专家共识学习资料
- 政治理论应知应会100题
- 2024年心理咨询师题库含答案【达标题】
- 北京市西城区2023-2024学年五年级上学期语文期末试卷(含答案)
- 2024年国家公务员考试《申论》真题(副省级)及参考答案
- 广东省广州市越秀区2023-2024学年八年级上学期期末语文试题(解析版)
- 《工业机器人系统集成》课标
- 过敏反应的分类和护理
- 【课件】讲文明懂礼仪守规矩 课件-2024-2025学年文明礼仪教育主题班会
评论
0/150
提交评论