版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在四边形中,若,且,则四边形是()A.矩形 B.菱形 C.正方形 D.梯形2.若,且为第四象限角,则的值等于A. B. C. D.3.下列命题中不正确的是()A.平面∥平面,一条直线平行于平面,则一定平行于平面B.平面∥平面,则内的任意一条直线都平行于平面C.一个三角形有两条边所在的直线分别平行于一个平面,那么该三角形所在的平面与这个平面平行D.分别在两个平行平面内的两条直线只能是平行直线或异面直线4.在△中,已知,,,则△的面积等于()A.6 B.12 C. D.5.如图是函数的部分图象2,则该解析式为()A. B.C. D.6.正三角形的边长为,如图,为其水平放置的直观图,则的周长为()A. B. C. D.7.在中,是斜边上的两个动点,且,则的取值范围为()A. B. C. D.8.已知集合A={x︱x>-2}且,则集合B可以是()A.{x︱x2>4} B.{x︱}C.{y︱} D.9.在长方体中,,,,则异面直线与所成角的大小为()A. B. C. D.或10.若,且,则是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角二、填空题:本大题共6小题,每小题5分,共30分。11.等比数列的前项和为,若,,成等差数列,则其公比为_________.12.如图,矩形中,,,是的中点,将沿折起,使折起后平面平面,则异面直线和所成的角的余弦值为__________.13.函数的定义域为_______.14.某学校高一年级举行选课培训活动,共有1024名学生、家长、老师参加,其中家长256人.学校按学生、家长、老师分层抽样,从中抽取64人,进行某问卷调查,则抽到的家长有___人15.数列的前项和为,若对任意,都有,则数列的前项和为________16.公比为2的等比数列的各项都是正数,且,则的值为___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,分别为角所对应的边,已知,,求的长度.18.已知函数,求其定义域.19.半期考试后,班长小王统计了50名同学的数学成绩,绘制频率分布直方图如图所示.根据频率分布直方图,估计这50名同学的数学平均成绩;用分层抽样的方法从成绩低于115的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学数学成绩均在中的概率.20.已知数列的前项和为,.(1)求数列的通项公式(2)数列的前项和为,若存在,使得成立,求范围?21.如图,已知矩形中,,,M是以为直径的半圆周上的任意一点(与C,D均不重合),且平面平面.(1)求证:平面平面;(2)当四棱锥的体积最大时,求与所成的角
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据向量相等可知四边形为平行四边形;由数量积为零可知,从而得到四边形为矩形.【详解】,可知且四边形为平行四边形由可知:四边形为矩形本题正确选项:【点睛】本题考查相等向量、垂直关系的向量表示,属于基础题.2、D【解析】试题分析:∵为第四象限角,,∴,.故选D.考点:同角间的三角函数关系.【点评】同角三角函数的基本关系式揭示了同一个角三角函数间的相互关系,其主要应用于同角三角函数的求值和同角三角函数之间的化简和证明.在应用这些关系式子的时候就要注意公式成立的前提是角对应的三角函数要有意义.3、A【解析】
逐一考查所给的选项是否正确即可.【详解】逐一考查所给的选项:A.平面∥平面,一条直线平行于平面,可能a在平面内或与相交,不一定平行于平面,题中说法错误;B.由面面平行的定义可知:若平面∥平面,则内的任意一条直线都平行于平面,题中说法正确;C.由面面平行的判定定理可得:若一个三角形有两条边所在的直线分别平行于一个平面,那么该三角形所在的平面与这个平面平行,题中说法正确;D.分别在两个平行平面内的两条直线只能是平行直线或异面直线,不可能相交,题中说法正确.本题选择A选项.【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.4、C【解析】
通过A角的面积公式,代入数据易得面积.【详解】故选C【点睛】此题考查三角形的面积公式,代入数据即可,属于简单题目.5、D【解析】
根据函数图象依次求出振幅,周期,根据周期求出,将点代入解析式即可得解.【详解】根据图象可得:,最小正周期,,经过,,,,,所以,所以函数解析式为:.故选:D【点睛】此题考查根据函数图象求函数解析式,考查函数的图象和性质,尤其是对振幅周期的辨析,最后求解的值,一般根据最值点求解.6、C【解析】
根据斜二测画法以及正余弦定理求解各边长再求周长即可.【详解】由斜二测画法可知,,,.所以.故..故.所以的周长为.故选:C【点睛】本题主要考查了斜二测画法的性质以及余弦定理在求解三角形中线段长度的运用.属于基础题.7、A【解析】
可借助直线方程和平面直角坐标系,代换出之间的关系,再结合向量的数量积公式进行求解即可【详解】如图所示:设直线方程为:,,,由得,可设,则,,,,当时,,故故选A【点睛】本题考查向量数量积的坐标运算,向量法在几何中的应用,属于中档题8、D【解析】
A、B={x|x>2或x<-2},
∵集合A={x|x>-2},
∴A∪B={x|x≠-2}≠A,不合题意;
B、B={x|x≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合题意;
C、B={y|y≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合题意;
D、若B={-1,0,1,2,3},
∵集合A={x|x>-2},
∴A∪B={x|x>-2}=A,与题意相符,
故选D.9、C【解析】
平移CD到AB,则即为异面直线与所成的角,在直角三角形中即可求解.【详解】连接AC1,CD//AB,可知即为异面直线与所成的角,在中,,故选.【点睛】本题考查异面直线所成的角.常用方法:1、平移直线到相交;2、向量法.10、C【解析】,则的终边在三、四象限;则的终边在三、一象限,,,同时满足,则的终边在三象限.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:、、成等差数列考点:1.等差数列性质;2.等比数列通项公式12、【解析】
取中点为,中点为,连接,则异面直线和所成角为.在中,利用边长关系得到余弦值.【详解】由题意,取中点,连接,则,可得直线和所成角的平面角为,(如图)过作垂直于,平面⊥平面,,平面,,且,结合平面图形可得:,,,又=,∴=,∴在中,=,∴△DFC是直角三角形且,可得.【点睛】本题考查了异面直线的夹角,意在考查学生的计算能力和空间想象能力.13、【解析】
由二次根式有意义,得:,然后利用指数函数的单调性即可得到结果.【详解】由二次根式有意义,得:,即,因为在R上是增函数,所以,x≤2,即定义域为:【点睛】本题主要考查函数定义域的求法以及指数不等式的解法,要求熟练掌握常见函数成立的条件,比较基础.14、16【解析】
利用分层抽样的性质,直接计算,即可求得,得到答案.【详解】由题意,可知共有1024名学生、家长、老师参加,其中家长256人,通过分层抽样从中抽取64人,进行某问卷调查,则抽到的家长人数为人.故答案为16【点睛】本题主要考查了分层抽样的应用,其中解答中熟记分层抽样的概念和性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解析】
根据数列的递推公式,求得,再结合等差等比数列的前项和公式,即可求解,得到答案.【详解】由题意,数列满足,…①,…②由①-②,可得,即当时,,所以,则数列的前项和为.【点睛】本题主要考查了数列的递推关系式的应用,以及等差、等比数列的前项和的应用,其中解答中熟练应用熟练的递推公式得到数列的通项公式,再结合等差、等比数列的前项和公式的准确计算是解答的关键,着重考查了推理与运算能力,属于中档试题.16、2【解析】
根据等比数列的性质与基本量法求解即可.【详解】由题,因为,又等比数列的各项都是正数,故.故.故答案为:【点睛】本题主要考查了等比数列的等积性与各项之间的关系.属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、或【解析】
由已知利用三角形的面积公式可得,可得或,然后分类讨论利用余弦定理可求的值.【详解】由题意得,即,或,又,当时,,可得,当时,,可得,故答案:或.【点睛】本题主要考查了三角形面积公式,余弦定理等知识解三角形,属于基础题.18、【解析】
由使得分式和偶次根式有意义的要求可得到一元二次不等式,解不等式求得结果.【详解】由题意得:,即,解得:定义域为【点睛】本题考查具体函数定义域的求解问题,关键是明确使得分式和偶次根式有意义的基本要求,由此构造不等式求得结果.19、(1)(2)【解析】
⑴用频率分布直方图中的每一组数据的平均数乘以对应的概率并求和即可得出结果;⑵首先可通过分层抽样确定6人中在分数段以及分数段中的人数,然后分别写出所有的基本事件以及满足题意中“两名同学数学成绩均在中”的基本事件,最后两者相除,即可得出结果.【详解】⑴由频率分布表,估计这50名同学的数学平均成绩为:;⑵由频率分布直方图可知分数低于115分的同学有人,则用分层抽样抽取6人中,分数在有1人,用a表示,分数在中的有5人,用、、、、表示,则基本事件有、、、、、、、、、、、、、、,共15个,满足条件的基本事件为、、、、、、、、、,共10个,所以这两名同学分数均在中的概率为.【点睛】本题考查了频率分布直方图以及古典概型的相关性质,解决本题的关键是对频率分布直方图的理解以及对古典概型概率的计算公式的使用,考查推理能力,是简单题.20、(1);(2)【解析】
(1)根据之间关系,可得结果(2)利用错位相减法,可得,然后使用分离参数的方法,根据单调性,计算其范围,可得结果.【详解】(1)当时,两式相减得:当时,,不符合上式所以(2)令,所以所以令①②所以①-②:则化简可得故,若存在,使得成立即存在,成立故,由,则所以可知数列在单调递增所以,故【点睛】本题考查了之间关系,还考查了错位相减法求和,本题难点在于的求法,重点在于错位相减法的应用,属中档题.21、(1)证明见解析(2)【解析】
(1)证明,得到平面,得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 方式采购合同范本3篇
- 房屋买卖居间合同注意事项3篇
- 改扩建工程施工合同的安全生产3篇
- 招标采购合同管理实践3篇
- 新编股份转让协议合同范本模板3篇
- 帆船出租协议范式3篇
- 政务信息化项目招标指南3篇
- 餐饮摊位租赁合同
- 旅馆租赁合同样式
- 地下工程挖机操作手聘用合同
- 城市轨道交通安全监理规划
- (格式已排好)国家开放大学电大《计算机应用基础(专)》终结性考试大作业答案任务一
- 已安排论坛-树脂基复合材料工艺仿真软件pam rtm教程
- 《XX医院安宁疗护建设实施方案》
- 西门子s7-400手册集400h冗余系统2004
- 梯形钢屋架钢结构课程设计
- 工程重点难点分析及对策
- 家具企业消防安全管理制度范本
- 湖南省住宅物业服务分项目分等级基准价标准[完整版]
- 中国 黑龙江 哈尔滨日出日落时间表
- 2019年上海市春考高考英语试卷(精校含答案)
评论
0/150
提交评论