版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列的前项和为,且,则满足的正整数的最大值为()A.16 B.17 C.18 D.192.已知函数的部分图象如图所示,则的值为()A. B. C. D.3.已知a,b,c满足,那么下列选项一定正确的是()A. B. C. D.4.将图像向左平移个单位,所得的函数为()A. B.C. D.5.在中,分别是角的对边,若,且,则的值为()A.2 B. C. D.46.设变量想x、y满足约束条件为则目标函数的最大值为()A.0 B.-3 C.18 D.217.若角的终边过点,则()A. B. C. D.8.过正方形的顶点,作平面,若,则平面和平面所成的锐二面角的大小是A. B.C. D.9.在中,角,,的对边分别是,,,若,则()A. B. C. D.10.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与原正方体体积的比值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.等差数列{}前n项和为.已知+-=0,=38,则m=_______.12.在区间上,与角终边相同的角为__________.13.已知,,,,则________.14.若满足约束条件,的最小值为,则________.15.已知函数分别由下表给出:123211123321则当时,_____________.16.如果数据的平均数是,则的平均数是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的角、、所对的边分别是、、,设向量,,.(1)若,求证:为等腰三角形;(2)若,边长,角,求的面积.18.在中,角的对边分别为.已知(1)若,,求的面积;(2)若的面积为,且,求的值.19.设公差不为0的等差数列中,,且构成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若数列的前项和满足:,求数列的前项和.20.已知点,,点为曲线上任意一点且满足(1)求曲线的方程;(2)设曲线与轴交于两点,点是曲线上异于的任意一点,直线分别交直线:于点,试问轴上是否存在一个定点,使得?若存在,求出点的坐标;若不存在,请说明理由.21.某学校为了了解高三文科学生第一学期数学的复习效果.从高三第一学期期末考试成绩中随机抽取50名文科考生的数学成绩,分成6组制成如图所示的频率分布直方图.(1)试利用此频率分布直方图求的值及这50名同学数学成绩的平均数的估计值;(2)该学校为制定下阶段的复习计划,从被抽取的成绩在的同学中选出3位作为代表进行座谈,若已知被抽取的成绩在的同学中男女比例为,求至少有一名女生参加座谈的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
先由,得到,,,公差大于零,再由数列的求和公式,即可得出结果.【详解】由得,,,,所以公差大于零.又,,,故选C.【点睛】本题主要考查等差数列的应用,熟记等差数列的性质与求和公式即可,属于常考题型.2、C【解析】
结合函数图像,由函数的最值求出A,由周期求出,再由求出的值.【详解】由图像可知:,故,又,所以又,故:.故选:C【点睛】本题考查了利用图像求三角函数的解析式,考查了学生综合分析,数形结合的能力,属于中档题.3、D【解析】
c<b<a,且ac<1,可得c<1且a>1.利用不等式的基本性质即可得出.【详解】∵c<b<a,且ac<1,∴c<1且a>1,b与1的大小关系不定.∴满足bc>ac,ac<ab,故选D.【点睛】本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.4、A【解析】
根据三角函数的图象的平移变换得到所求.【详解】由已知将函数y=cos2x的图象向左平移个单位,所得的函数为y=cos2(x)=cos(2x);故选:A.【点睛】本题考查了三角函数的图象的平移;明确平移规律是解答的关键.5、A【解析】
由正弦定理,化简求得,解得,再由余弦定理,求得,即可求解,得到答案.【详解】在中,因为,且,由正弦定理得,因为,则,所以,即,解得,由余弦定理得,即,解得,故选A.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.6、C【解析】
画出可行域如下图所示,由图可知,目标函数在点处取得最大值,且最大值为.故选C.【点睛】本小题主要考查利用线性规划求线性目标函数的最大值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画图可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.7、D【解析】
解法一:利用三角函数的定义求出、的值,再利用二倍角公式可得出的值;解法二:利用三角函数的定义求出,再利用二倍角公式以及弦化切的思想求出的值.【详解】解法一:由三角函数的定义可得,,,故选D.解法二:由三角函数定义可得,所以,,故选D.【点睛】本题考查三角函数的定义与二倍角公式,考查同角三角函数的定义,利用三角函数的定义求值是解本题的关键,同时考查了同角三角函数基本思想的应用,考查计算能力,属于基础题.8、B【解析】法一:建立如图(1)所示的空间直角坐标系,不难求出平面APB与平面PCD的法向量分别为n1=(0,1,0),n2=(0,1,1),故平面ABP与平面CDP所成二面角的余弦值为=,故所求的二面角的大小是45°.法二:将其补成正方体.如图(2),不难发现平面ABP和平面CDP所成的二面角就是平面ABQP和平面CDPQ所成的二面角,其大小为45°.9、D【解析】
由题意,再由余弦定理可求出,即可求出答案.【详解】由题意,,设,由余弦定理可得:,则.故选D.【点睛】本题考查了正、余弦定理的应用,考查了计算能力,属于中档题.10、C【解析】
根据三视图还原出几何体,得到是在正方体中,截去四面体,利用体积公式,求出其体积,然后得到答案.【详解】根据三视图还原出几何体,如图所述,得到是在正方体中,截去四面体设正方体的棱长为,则,故剩余几何体的体积为,所以截去部分的体积与剩余部分的体积的比值为.故选:C.【点睛】本题考查了几何体的三视图求几何体的体积;关键是正确还有几何体,利用体积公式解答,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、10【解析】
根据等差数列的性质,可得:+=2,又+-=0,则2=,解得=0(舍去)或=2.则,,所以m=10.12、【解析】
根据与终边相同的角可以表示为这一方法,即可得出结论.【详解】因为,所以与角终边相同的角为.【点睛】本题考查终边相同的角的表示方法,考查对基本概念以及基本知识的熟练程度,考查了数学运算能力,是简单题.13、【解析】
根据已知角的范围分别求出,,利用整体代换即可求解.【详解】,,,所以,,,,所以,=故答案为:【点睛】此题考查三角函数给值求值的问题,关键在于弄清角的范围,准确得出三角函数值,对所求的角进行合理变形,用已知角表示未知角.14、4【解析】
由约束条件得到可行域,取最小值时在轴截距最小,通过直线平移可知过时,取最小值;求出点坐标,代入构造出方程求得结果.【详解】由约束条件可得可行域如下图阴影部分所示:取最小值时,即在轴截距最小平移直线可知,当过点时,在轴截距最小由得:,解得:本题正确结果:【点睛】本题考查现行规划中根据最值求解参数的问题,关键是能够明确最值取得的点,属于常考题型.15、3【解析】
根据已知,用换元法,从外层求到里层,即可求解.【详解】令.故答案为:.【点睛】本题考查函数的表示,考查复合函数值求参数,换元法是解题的关键,属于基础题.16、5【解析】
根据平均数的定义计算.【详解】由题意,故答案为:5.【点睛】本题考查求新数据的均值.掌握均值定义是解题关键.实际上如果数据的平均数是,则新数据的平均数是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
⑴因为,所以,即,其中是的外接圆半径,所以,所以为等腰三角形.⑵因为,所以.由余弦定理可知,,即解方程得:(舍去)所以.18、(1);(2).【解析】
(1)先根据计算出与,再利用余弦定理求出b边,最后利用求出答案;(2)利用正弦定理将等式化为变得关系,再利用余弦定理化为与的关系式,再结合面积求出c的值.【详解】解:(1)因为,所以.又,所以.因为,,且,所以,解得,所以.(2)因为,由正弦定理,得.又,所以.又,得,所以,所以.【点睛】本题考查正余弦定理解三角形,属于基础题.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根据条件列方程解得公差,再根据等差数列通项公式得结果,(Ⅱ)先根据和项求通项,再根据错位相减法求和.【详解】(Ⅰ)因为构成等比数列,所以(0舍去)所以(Ⅱ)当时,当时,,相减得所以即【点睛】本题考查等差数列通项公式以及错位相减法求和,考查基本分析求解能力,属中档题.20、(1);(2)存在点使得成立.【解析】
(1)设P(x,y),由|PA|=2|PB|,得=2,由此能求出曲线的方程.(2)由题意得M(0,1),N(0,-1),设点R(x0,y0),(x0≠0),由点R在曲线上,得=1,直线RM的方程,从而直线RM与直线y=3的交点为,直线RN的方程为,从而直线RN与直线y=3的交点为,假设存在点S(0,m),使得成立,则,由此能求出存在点S,使得成立,且S点的坐标为.【详解】(1)设,由,得:,整理得.所以曲线的方程为.(2)由题意得,,.设点,由点在曲线上,所以.直线的方程为,所以直线与直线的交点为.直线的方程为所以直线与直线的交点为.假设存在点,使得成立,则,.即,整理得.因为,所以,解得.所以存在点使得成立,且点的坐标为.【点睛】本题考查曲线方程的求法,考查是否存在满足向量积为0的点的判断与求法,考查圆、直线方程、向量的数量积公式等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.21、(1);平均数的估计值(2)【解析】
(1)根据各小矩形面积和为1可求得的值;由频率分布直方图,结合平均数的求法即可求解.(2)根据频率分布直方图先求得成绩在的同学人数,结合分层抽样可得男生4人,女生2人,设男生分别为;女生分别为,利用列举法可得抽取3人的所有情况,进
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度租赁合同标的物的保险责任
- 2024中国电建西北勘测设计研究院限公司招聘15人(陕西)易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信全渠道运营中心校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国建筑土木建设限公司招聘443人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国五矿集团限公司校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度租赁安全:办公大楼租赁期间安全生产合同
- 2024“才聚齐鲁成就未来”山东海洋集团限公司“筑梦海洋”夏季校园招聘16人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度许可使用合同:不锈钢制品产品许可使用协议
- 2024年度知识产权质押合同质权与处置
- 2024年度大数据中心建设运营合作协议
- 计算机控制系统论文
- 便携式野外净水器设计
- 大学生职业生涯规划(师范类)
- 工科中的设计思维学习通超星课后章节答案期末考试题库2023年
- 部编版四年级语文上册课内阅读复习试题含答案全套
- 教科版科学五年级上册第7课 计量时间和我们的生活课件
- 大学生就业指导-面试技巧课件
- 人教版八年级语文上册《苏州园林》评课稿
- 建设工程第三方质量安全巡查标准
- 混凝土超声检测缺陷报告
- 枫桥式乡镇派出所事迹材料
评论
0/150
提交评论