版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,扇形的圆心角为,半径为1,则该扇形绕所在直线旋转一周得到的几何体的表面积为(
)A. B. C. D.2.已知等比数列的前项和为,若,,则数列的公比()A. B. C.或 D.以上都不对3.若直线与直线互相平行,则的值等于()A.0或或3 B.0或3 C.0或 D.或34.已知,当取得最小值时()A. B. C. D.5.已知锐角中,角所对的边分别为,若,则的取值范围是()A. B. C. D.6.已知空间中两点和的距离为6,则实数的值为()A.1 B.9 C.1或9 D.﹣1或97.已知直线,平面,且,下列条件中能推出的是()A. B. C. D.与相交8.过点P(﹣2,m)和Q(m,4)的直线斜率等于1,那么m的值等于()A.1或3 B.4 C.1 D.1或49.若,,则的最小值为()A.2 B. C. D.10.直线l:3x+4y+5=0被圆M:(x–2)2+(y–1)2=16截得的弦长为()A. B.5 C. D.10二、填空题:本大题共6小题,每小题5分,共30分。11.设为内一点,且满足关系式,则________.12.已知数列从第项起每项都是它前面各项的和,且,则的通项公式是__________.13.已知函数,的最小正周期是___________.14.在三棱锥中,平面,是边长为2的正三角形,,则三棱锥的外接球的表面积为__________.15.一个封闭的正三棱柱容器,该容器内装水恰好为其容积的一半(如图1,底面处于水平状态),将容器放倒(如图2,一个侧面处于水平状态),这时水面与各棱交点分别为E,F、,,则的值是__________.16.已知等腰三角形底角的余弦值等于,则这个三角形顶角的正弦值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,且函数是偶函数,设(1)求的解析式;(2)若不等式≥0在区间(1,e2]上恒成立,求实数的取值范围;(3)若方程有三个不同的实数根,求实数的取值范围.18.已知函数,且,.(1)求该函数的最小正周期及对称中心坐标;(2)若方程的根为,且,求的值.19.已知函数,(1)求的单调递增区间.(2)求在区间的最大值和最小值.20.已知平面向量,=(2x+3,-x),(x∈R).(1)若向量与向量垂直,求;(2)若与夹角为锐角,求的取值范围.21.已知数列的前项和为,且满足.(1)求的值;(2)证明是等比数列,并求;(3)若,数列的前项和为.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
以所在直线为旋转轴将整个图形旋转一周所得几何体是一个半球,利用球面的表面积公式及圆的表面积公式即可求得.【详解】由已知可得:以所在直线为旋转轴将整个图形旋转一周所得几何体是一个半球,其中半球的半径为1,故半球的表面积为:故答案为:C【点睛】本题主要考查了旋转体的概念,以及球的表面积的计算,其中解答中熟记旋转体的定义,以及球的表面积公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.2、C【解析】
根据和可得,解得结果即可.【详解】由得,所以,所以,所以,解得或故选:C.【点睛】本题考查了等比数列的通项公式的基本量的运算,属于基础题.3、D【解析】
根据直线的平行关系,列方程解参数即可.【详解】由题:直线与直线互相平行,所以,,解得:或.经检验,当或时,两条直线均平行.故选:D【点睛】此题考查根据直线平行关系求解参数的取值,需要熟记公式,注意考虑直线重合的情况.4、D【解析】
可用导函数解决最小值问题,即可得到答案.【详解】根据题意,令,则,而当时,,当时,,则在处取得极小值,故选D.【点睛】本题主要考查函数的最值问题,意在考查学生利用导数工具解决实际问题的能力,难度中等.5、B【解析】
利用余弦定理化简后可得,再利用正弦定理把边角关系化为角的三角函数的关系式,从而得到,因此,结合的范围可得所求的取值范围.【详解】,因为为锐角三角形,所以,,,故,选B.【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.6、C【解析】
利用空间两点间距离公式求出值即可。【详解】由两点之间距离公式,得:,化为:,解得:或9,选C。【点睛】空间两点间距离公式:。代入数据即可,属于基础题目。7、C【解析】
根据线面垂直的性质,逐项判断即可得出结果.【详解】A中,若,由,可得;故A不满足题意;B中,若,由,可得;故B不满足题意;C中,若,由,可得;故C正确;D中,若与相交,由,可得异面或平,故D不满足题意.故选C【点睛】本题主要考查线面垂直的性质,熟记线面垂直的性质定理即可,属于常考题型.8、C【解析】试题分析:利用直线的斜率公式求解.解:∵过点P(﹣2,m)和Q(m,4)的直线斜率等于1,∴k==1,解得m=1.故选C.考点:直线的斜率.9、D【解析】
根据所给等量关系,用表示出可得.代入中,构造基本不等式即可求得的最小值.【详解】因为,所以变形可得所以由基本不等式可得当且仅当时取等号,解得所以的最小值为故选:D【点睛】本题考查了基本不等式求最值的应用,注意构造合适的基本不等式形式,属于中档题.10、C【解析】
求出圆心到直线l的距离,再利用弦长公式进行求解即可.【详解】∵圆(x–2)2+(y–1)2=16,∴圆心(2,1),半径r=4,圆心到直线l:3x+4y+5=0的距离d==3,∴直线3x+4y+5=0被圆(x–2)2+(y–1)2=16截得的弦长l=2=2.故选C.【点睛】本题考查了直线被圆截得的弦长公式,主要用到了点到直线的距离公式.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由题意将已知中的向量都用为起点来表示,从而得到32,分别取AB、AC的中点为D、E,可得2,利用平面知识可得S△AOB与S△AOC及S△BOC与S△ABC的关系,可得所求.【详解】∵,∴32,∴2,分别取AB、AC的中点为D、E,∴2,∴S△AOBS△ABFS△ABCS△ABC;S△AOCS△ACFS△ABCS△ABC;S△BOCS△ABC,∴故答案为:.【点睛】本题考查向量的加减法运算,体现了数形结合思想,解答本题的关键是利用向量关系画出助解图形.12、【解析】
列举,可找到是从第项起的等比数列,由首项和公比即可得出通项公式.【详解】解:,即,所以是从第项起首项,公比的等比数列.通项公式为:故答案为:【点睛】本题考查数列的通项公式,可根据递推公式求出.13、【解析】
先化简函数f(x),再利用三角函数的周期公式求解.【详解】由题得,所以函数的最小正周期为.故答案为【点睛】本题主要考查和角的正切和正切函数的周期的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.14、【解析】
设三棱锥的外接球半径为,利用正弦定理求出的外接圆半径,再利用公式可计算出外接球半径,最后利用球体的表面积公式可计算出结果.【详解】由正弦定理可得,的外接圆直径为,,设三棱锥的外接球半径为,平面,,因此,三棱锥的外接球表面积为,故答案为.【点睛】本题考查多面体的外接球,考查球体表面积的计算,在求解直棱柱后直棱锥的外接球,若底面外接圆半径为,高为,可利用公式得出外接球的半径,解题时要熟悉这些结论的应用.15、【解析】
设,则,由题意得:,由此能求出的值.【详解】设,则,由题意得:,解得,.故答案为:.【点睛】本题考查两线段比值的求法、三棱柱的体积等基础知识,考查运算求解能力,是中档题.16、【解析】
已知等腰三角形可知为锐角,利用三角形内角和为,建立底角和顶角之间的关系,再求解三角函数值.【详解】设此三角形的底角为,顶角为,易知为锐角,则,,所以.【点睛】给值求值的关键是找准角与角之间的关系,再利用已知的函数求解未知的函数值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】
(1)对称轴为,对称轴为,再根据图像平移关系求解;(2)分离参数,转化为求函数的最值;(3)令为整体,转化为二次函数根的分布问题求解.【详解】(1)函数的对称轴为,因为向左平移1个单位得到,且是偶函数,所以,所以.(2)即又,所以,则因为,所以实数的取值范围是.(3)方程即化简得令,则若方程有三个不同的实数根,则方程必须有两个不相等的实数根,且或,令当时,则,即,当时,,,,舍去,综上,实数的取值范围是.【点睛】本题考查求函数解析式,函数不等式恒成立及函数零点问题.函数不等式恒成立通常采用参数分离法;函数零点问题要结合函数与方程的关系求解.18、(1)最小正周期为.对称中心坐标为;(2)-1【解析】
(1)由题意两未知数列两方程即可求出、的值,再进行三角变换,可得的解析式,再利用正弦函数的周期公式、图象的对称性,即可得出结论.(2)先由条件求得的值,可得的值.【详解】(1)由,得:,解得:,,,即函数的最小正周期为.由得:函数的对称中心坐标为;(2)由题意得:,即,或,则或,由知:,.【点睛】本题主要考查三角恒等变换,正弦函数的周期性、图象的对称性,以及三角函数求值.19、(1),;(2)最大值为,最小值为【解析】
利用二倍角公式、两角和差正弦公式和辅助角公式可化简出;(1)令,解出的范围即为所求单调递增区间;(2)利用的范围可求得所处的范围,整体对应正弦函数图象可确定最大值和最小值取得时的值,进而求得最值.【详解】(1)令,,解得:,的单调递增区间为,(2)当时,当时,取得最大值,最大值为当时,取得最小值,最小值为【点睛】本题考查正弦型函数单调区间和最值的求解问题,涉及到利用两角和差公式、二倍角公式和辅助角公式化简三角函数;关键是能够灵活应用整体对应的方式,结合正弦函数的图象与性质来进行求解.20、(1)10或2;(2).【解析】
(1)由向量与向量垂直,求得或,进而求得的坐标,利用模的计算公式,即可求解;(2)因为与夹角为锐角,所以,且与不共线,列出不等关系式,即可求解.【详解】(1)由题意,平面向量,,由向量与向量垂直,则,解得或,当时,,则,所;当时,,则,所,(2)因为与夹角为锐角,所以,且与不共线,即且,解得,且,即的取值范围为.【点睛】本题主要考查了向量的坐标运算,以及向量的垂直条件,以及向量的数量积的应用,着重考查了推理运算能力,属于基础题.21、(1)2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度城市景观美化宣传品制作合同3篇
- 应急指挥系统的建设与优化
- 电气行业安全管理工作总结
- 二零二五年度花卉进出口贸易合同协议3篇
- 二零二五年度个人二手房买卖风险评估合同2篇
- 二零二五年度个人医疗费用收据模板定制合同3篇
- 二零二五版电力行业员工试用及转正劳动合同范本3篇
- 2025版科研设备续租合同申请模板3篇
- 仓库信息化流程
- 建筑行业工程师的工作总结
- 医院定岗定编
- 恢复中华人民共和国国籍申请表
- 管理期货的趋势跟踪策略 寻找危机阿尔法
- 沥青化学分析试验作业指导书
- 2023年大学物理化学实验报告化学电池温度系数的测定
- 脑出血的护理课件脑出血护理查房PPT
- 南京大学-大学计算机信息技术教程-指导书
- 煤矿机电运输安全培训课件
- 扣缴个人所得税报告表-(Excel版)
- 02R112 拱顶油罐图集
- Unit+4+History+and+Traditions单元整体教学设计课件 高中英语人教版(2019)必修第二册单元整体教学设计
评论
0/150
提交评论