版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.从3位男运动员和4位女运动员中选派3人参加记者招待会,至少有1位男运动员和1位女运动员的选法有()种A. B. C. D.2.已知函数,且不等式的解集为,则函数的图象为()A. B.C. D.3.将函数的图像左移个单位,则所得到的图象的解析式为A. B.C. D.4.已知正数、满足,则的最小值为()A. B. C. D.5.设m>1,在约束条件y≥xA.1,1+2C.(1,3) D.(3,+∞)6.已知,若,则()A. B. C. D.7.2019年是新中国成立70周年,涡阳县某中学为庆祝新中国成立70周年,举办了“我和我的祖国”演讲比赛,某选手的6个得分去掉一个最高分,去掉一个最低分,4个剩余分数的平均分为91.现场制作的6个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以表示,则4个剩余分数的方差为()A.1 B. C.4 D.68.在数列中,,,则的值为:A.52 B.51 C.50 D.499.已知是不同的直线,是不同的平面,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则10.已知甲、乙两组数据用茎叶图表示如图所示,若它们的中位数相同,平均数也相同,则图中的的比值等于A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知算式,在方框中填入两个正整数,使它们的乘积最大,则这两个正整数之和是___.12.如图是甲、乙两人在10天中每天加工零件个数的茎叶图,若这10天甲加工零件个数的中位数为,乙加工零件个数的平均数为,则______.13.已知向量,,若,则__________.14.如果数据的平均数是,则的平均数是________.15.已知sin=,则cos=________.16.已知是以为首项,为公差的等差数列,是其前项和,则数列的最小项为第___项三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)从2,3,8,9中任取两个不同的数字,分别记为,求为整数的概率?(2)两人相约在7点到8点在某地会面,先到者等候另一个人20分钟方可离去.试求这两人能会面的概率?18.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到下表数据:单价(元)销量(件)且,,(1)已知与具有线性相关关系,求出关于回归直线方程;(2)解释回归直线方程中的含义并预测当单价为元时其销量为多少?19.如图,菱形ABCD与正三角形BCE的边长均为2,且平面ABCD⊥平面BCE,平面ABCD,.(I)求证:平面ABCD;(II)求证:平面ACF⊥平面BDF.20.设数列的前项和,数列为等比数列,且.(1)求数列和的通项公式;(2)设,求数列的前项和.21.如图,在三棱柱中,是边长为4的正三角形,侧面是矩形,分别是线段的中点.(1)求证:平面;(2)若平面平面,,求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用分类原理,选出的3人中,有1男2女,有2男1女,两种情况相加得到选法总数.【详解】(1)3人中有1男2女,即;(2)3人中有2男1女,即;所以选法总数为,故选C.【点睛】分类加法原理和分步乘法原理进行计算时,要注意分类的标准,不出现重复或遗漏情况,本题若是按先选1个男的,再选1个女的,最后从剩下的5人中选1人,则会出现重复现象.2、B【解析】本题考查二次函数图像,二次方程的根,二次不等式的解集三者之间的关系.不等式的解集为,所以方程的两根是则解得所以则故选B3、C【解析】
由三角函数的图象变换,将函数的图像左移个单位,得到,即可得到函数的解析式.【详解】由题意,将函数的图像左移个单位,可得的图象,所以得到的函数的解析式为,故选C.【点睛】本题主要考查了三角函数的图象变换,其中熟记三角函数的图象变换的规则是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.4、B【解析】
由得,再将代数式与相乘,利用基本不等式可求出的最小值.【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选.【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.5、A【解析】试题分析:∵,故直线与直线交于点,目标函数对应的直线与直线垂直,且在点,取得最大值,其关系如图所示:即,解得,又∵,解得,选:A.考点:简单线性规划的应用.【方法点睛】本题考查的知识点是简单线性规划的应用,我们可以判断直线的倾斜角位于区间上,由此我们不难判断出满足约束条件的平面区域的形状,其中根据平面直线方程判断出目标函数对应的直线与直线垂直,且在点取得最大值,并由此构造出关于的不等式组是解答本题的关键.6、C【解析】
由,得,则,则.【考点定位】7、B【解析】
由题意得x≥3,由此能求出4个剩余数据的方差.【详解】由题意得x≥3,则4个剩余分数的方差为:s2[(93﹣91)2+(90﹣91)2+(90﹣91)2+(91﹣91)2].故选B.【点睛】本题考查了方差的计算问题,也考查了茎叶图的性质、平均数、方差等基础知识,是基础题.8、A【解析】
由,得到,进而得到数列首项为2,公差为的等差数列,利用等差数列的通项公式,即可求解,得到答案.【详解】由题意,数列满足,即,又由,所以数列首项为2,公差为的等差数列,所以,故选A.【点睛】本题主要考查了等差数列的定义,以及等差数列的通项公式的应用,其中解答中熟记等差数列的定义,以及等差数列的通项公式是解答的关键,着重考查了推理与运算能力,属于基础题.9、D【解析】
由线面平行的判定定理即可判断A;由线面垂直的判定定理可判断B;由面面垂直的性质可判断C;由空间中垂直于同一条直线的两平面平行可判断D.【详解】对于A选项,加上条件“”结论才成立;对于B选项,加上条件“直线和相交”结论才成立;对于C选项,加上条件“”结论才成立.故选:D【点睛】本题考查空间直线与平面的位置关系,涉及线面平行的判定、线面垂直的判定、面面垂直的性质,属于基础题.10、A【解析】
从茎叶图提取甲、乙两组数据中的原始数据,并按从小到大排列,分别得到中位数,并计算各自的平均数,再根据中位数、平均值相等得到关于的方程.【详解】甲组数据:,中位数为,乙组数据:,中位数为:,所以,所以,故选A.【点睛】本题考查中位数、平均数的概念与计算,对甲组数据排序时,一定是最大,乙组数据中一定是最小.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
设填入的数从左到右依次为,则,利用基本不等式可求得的最大值及此时的和.【详解】设在方框中填入的两个正整数从左到右依次为,则,于是,,当且仅当时取等号,此时.故答案为:15【点睛】本题考查基本不等式成立的条件,属于基础题.12、44.5【解析】
由茎叶图直接可以求出甲的中位数和乙的平均数,求和即可.【详解】由茎叶图知,甲加工零件个数的中位数为,乙加工零件个数的平均数为,则.【点睛】本题主要考查利用茎叶图求中位数和平均数.13、1【解析】由,得.即.解得.14、5【解析】
根据平均数的定义计算.【详解】由题意,故答案为:5.【点睛】本题考查求新数据的均值.掌握均值定义是解题关键.实际上如果数据的平均数是,则新数据的平均数是.15、【解析】
由sin=,得cos2=1-2sin2=,即cos=,所以cos=cos=,故答案为.16、【解析】
先求,利用二次函数性质求最值即可【详解】由题当时最小故答案为8【点睛】本题考查等差数列的求和公式,考查二次函数求最值,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)分别求出基本事件总数及为整数的事件数,再由古典概型概率公式求解;(2)建立坐标系,找出会面的区域,用会面的区域面积比总区域面积得答案.【详解】(1)所有的基本事件共有4×3=12个,记事件A={为整数},因为,则事件A包含的基本事件共有2个,∴p(A)=;(2)以x、y分别表示两人到达时刻,则.两人能会面的充要条件是.建立直角坐标系如下图:∴P=.∴这两人能会面的概率为.【点睛】本题考查古典概型与几何概型概率的求法,考查数学转化思想方法,是基础题.18、(1);(2)销量为件.【解析】
(1)利用最小二乘法的公式求得与的值,即可求出线性回归方程;(2)的含义是单价每增加1元,该产品的销量将减少7件;在(1)中求得的回归方程中,取求得值,即可得到单价为12元时的销量.【详解】(1)由题意得:,,,,关于回归直线方程为;(2)的含义是单价每增加元,该产品的销量将减少件;当时,,即当单价为元时预测其销量为件.【点睛】本题主要考查线性回归方程的求法—最小二乘法,以及利用线性回归方程进行预测估计。19、(Ⅰ)见解析;(Ⅱ)见解析.【解析】(1)添加辅助线,通过证明线线平行来证明线面平行.(2)通过证明线面垂直面,来证明面面.(Ⅰ)证明:如图,过点作于,连接,∴.∵平面⊥平面,平面,平面平面,∴⊥平面,又∵⊥平面,,∴,.∴四边形为平行四边形.∴.∵平面,平面,∴平面.(Ⅱ)证明:面,,又四边形是菱形,,又,面,又面,从而面面.点晴:本题考查的是空间线面的平行和垂直关系.第一问要考查的是线面平行,通过先证明,得四边形为平行四边形.证得,可得平面,这里对于线面平行的条件平面,平面要写全;第二问中通过先证明面,再结合面,从而面面.20、(1),;(2)【解析】
(1)通过求解数列的通项公式,从而可以求出首项与公比,即可得到的通项公式;(2)化简,利用错位相减法求解数列的和即可.【详解】(1)∴,∴,∵,∴,∴,,∵,,∴,从而,∵数列为等比数列∴数列的公比为,从而;(2)∵,,∴∴∴,∴.【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年级数学计算题专项练习集锦
- 四年级数学(四则混合运算带括号)计算题专项练习与答案汇编
- 陈氏简单的研究报告
- 醋酸裂解生产课程设计
- 道闸断电应急方案
- 道路青苔处理方案
- 道路计价课程设计
- 道路给水施工方案
- 招标啦汽车租赁服务商招募启示
- 道路管网投标方案
- 国开电大2021年春《离散数学》形考四作业答案
- 轮转到急诊科护士出科小结
- 美索巴莫注射液-临床药品应用解读
- 物业管理全程委托物业管理方案
- 医院护理培训课件:《护理科研》
- 不同结构游戏材料与幼儿游戏行为的关系研究
- 中兽医-诊法课件
- 小学校长年终工作总结汇报
- 2022年北京市公务员考试申论真题及参考答案
- 《跨境电子商务客户服务管理》试卷及答案 卷B
- 中国国防科学技术报告研制报告样本
评论
0/150
提交评论