运筹学大学课件第十四章排队论的基本知识文档_第1页
运筹学大学课件第十四章排队论的基本知识文档_第2页
运筹学大学课件第十四章排队论的基本知识文档_第3页
运筹学大学课件第十四章排队论的基本知识文档_第4页
运筹学大学课件第十四章排队论的基本知识文档_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

排队论的基本知识1.1

排队模型1.2排队系统的组成和特征排队论排队论研究的内容性态问题:排队系统的概率规律,如队长分布,等待时间分布等.最优化问题:排队系统的最优设计.统计推断:判定排队系统的类型.顾客源一、排队模型排队系统排队结构服务机构排队规则服务规则接受服务后离去——排队系统的的一般表示服务机构服务台(a)一个队列、单服务台(阶段)服务台1服务台2服务机构(b)一个队列、s个服务阶段服务台1服务台2服务机构(c)一个队列、s个服务台一个服务阶段服务台3服务台4服务台1服务台2服务机构(d)s个队列、s个服务阶段服务台3服务台4服务台1服务台2:1–2–4:2–4–3:3–2–1–4服务机构(e)混合型排队结构服务台(f)一个队列服务台(g)s个队列

1.输入过程顾客总体:有限,无限.顾客到达方式:单个,成批.顾客到达间隔时间:确定的、随机的.顾客到达的独立性:独立,不独立.输入过程的平稳性:与时间无关(平稳的),与时间有关(非平稳的).二、排队系统的组成和特征顾客到达时间间隔的分布::第n个顾客到达的时刻;设:第n个顾客与第n-1个顾客到达的时间间隔;令顾客到达时间间隔的分布:假定是独立同分布,分布函数为,排队论中常用的有两种:(2)最简流(即Poisson流)(M):

顾客到达时间间隔为独立的,服从负指数分布,其密度函数为(1)定长分布(D):顾客到达时间间隔为确定的。因为负指数分布具有无后效性(即Markov性)

2.排队及排队规则即时制(损失制)等待制先到先服务:FCFS后到先服务:LCFS随机服务优先权服务:PS队容量:有限,无限;有形,无形.队列数目:单列,多列.

3.服务机构服务员数量:无,单个,多个.队列与服务台的组合服务方式:单个顾客,成批顾客.服务时间:确定的,随机的.服务时间和到达间隔时间至少一个是随机的.服务时间分布是平稳的.服务时间分布:

设某服务台的服务时间为v,其密度函数为b(t),常见的分布有:(1)定长分布(D):每个顾客接受服务的时间是一个确定的常数。(2)负指数分布(M):每个顾客接受服务时间相互独立,具有相互的负指数分布:

其中,为一常数。μ--单位时间平均服务完成的顾客数1/μ--每个顾客的平均服务时间服务时间分布:(3)k阶爱尔朗(Erlang)分布:每个顾客接受服务时间服从k阶爱尔朗分布,其密度函数为:

符号表示:X/Y/ZX–顾客到达间隔时间分布Y--服务时间分布Z--服务台个数X,Y可以是:M--负指数分布D--确定型Ek--k阶Erlang分布GI--一般相互独立的到达时间间隔分布G--一般(General)时间分布三、排队系统的分类

扩展符号表示:X/Y/Z/A/B/CA--系统容量B--顾客源中顾客的数量C--服务规则:FCFS,LCFS,等等.若省略后三项,即是指下面的情形:

X/Y/Z///FCFS例:M/M/s/K表示?

已知:顾客到达间隔时间分布,服务时间分布.求:队长:Ls--系统中的顾客数.排队长(队列长):Lq--队列中的顾客数.

Ls=

Lq+正在接受服务的顾客数逗留时间:WS--顾客在系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论