版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州市邗江县北洲中学2022年高一数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.----------------(
)A.
B.
C.
D.参考答案:A略2.若O是△ABC所在平面内一点,且满足,则△ABC一定是
(
)A.等边三角形
B.直角三角形
C.等腰三角形
D.等腰直角三角形
参考答案:B略3.如图,为正方体的中心,则在该正方体各个面上的射影可能是A.
B.
C.
D.
参考答案:C略4.圆柱的一个底面积为,侧面展开图是一个正方形,那么这个圆柱的体积是()参考答案:5.已知函数f(x)=,x∈{1,2,3}.则函数f(x)的值域是A. B.(–∞,0] C.[1,+∞) D.R参考答案:A6.某三棱锥的三视图如图所示,则该三棱锥的体积为(
)A.60 B.30 C.20 D.10参考答案:D【分析】由题意,根据给定的几何体的三视图,还原得出空间几何体的形状,利用体积公式求解,即可得到答案.【详解】由题意,根据给定的几何体的三视图可知,该几何体是如图所示一个三棱锥,则该几何体的体积是,故选D.【点睛】本题考查了几何体的三视图及几何体的体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.
7.给出下列关于互不相同的直线和平面的四个命题:(1)点,则与不共面;(2)、是异面直线,,且,则;(3)若,则;(4)若点A,,则,则,其中为错误的命题是(
)个A.1个
B.2个
C.3个
D.4个参考答案:A8.已知,当取得最小值时x=(
)A. B. C. D.参考答案:D【分析】可用导函数解决最小值问题,即可得到答案.【详解】根据题意,令,则,而当时,,当时,,则在处取得极小值,故选D.【点睛】本题主要考查函数的最值问题,意在考查学生利用导数工具解决实际问题的能力,难度中等.9.已知实数满足,则的取值范围是(
)A.
B.
C.
D.
参考答案:C略10.函数f(x)=ax-b的图象如图所示,其中a,b为常数,则下列结论正确的是
()A.a>1,b<0
B.0<a<1,b>0C.a>1,b>0
D.0<a<1,b<0参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.函数y=2x﹣的值域是.参考答案:(﹣∞,]【考点】函数的值域.【分析】令,解出x=,所以得到函数y=,对称轴为t=,所以函数在[0,+∞)上单调递减,t=0时,y=,所以y,这便求出了原函数的值域.【解答】解:令,则x=;∴;∴该函数在[0,+∞)上单调递减;∴,即y;∴原函数的值域为(﹣].故答案为:(﹣].12.若,且,则a的取值范围为
.参考答案:∵,∴,得.13.(4分)计算:log6+(6)×(0.2)﹣2﹣lg4﹣lg25﹣log6
.参考答案:10考点: 对数的运算性质.专题: 函数的性质及应用.分析: 化带分数为假分数,化负指数为正指数,然后结合有理指数幂的运算性质及对数的运算性质化简求值.解答: 解:log6+(6)×(0.2)﹣2﹣lg4﹣lg25﹣log6===2+=10.故答案为:10.点评: 本题考查了有理指数幂的运算性质及对数的运算性质,是基础的计算题.14.数列满足(),则等于
▲
.参考答案:略15.已知函数,则 参考答案:16.(5分)在大小为60°的二面角α﹣1﹣β中,已知AB?α,CD?β,且AB⊥l于B,CD⊥l于D,若AB=CD=1,BD=2,则AC的长为 .参考答案:考点: 与二面角有关的立体几何综合题.专题: 空间位置关系与距离.分析: 如图所示,,利用数量积运算性质可得=+,由AB⊥l于B,CD⊥l于D,可得=0.又在大小为60°的二面角α﹣1﹣β中,可得=1×1×cos120°,代入计算即可得出.解答: 解:如图所示,,∴=+,∵AB⊥l于B,CD⊥l于D,∴=0,又在大小为60°的二面角α﹣1﹣β中,∴=1×1×cos120°=﹣,∴=1+22+1﹣=5,∴=.故答案为:.点评: 本题考查了向量的多边形法则、数量积运算性质、向量垂直与数量积的关系、二面角的应用,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.17.如图,边长为l的菱形ABCD中,∠DAB=60°,,,则=.参考答案:
【考点】平面向量数量积的运算.【分析】以A为原点,AB所在直线为x轴,建立如图坐标系,可得A、B、C、D各点的坐标,结合题中数据和等式,可得向量、的坐标,最后用向量数量积的坐标公式,可算出的值.【解答】解:以A为原点,AB所在直线为x轴,建立如图坐标系∵菱形ABCD边长为1,∠DAB=60°,∴D(cos60°,sin60°),即D(,),C(,)∵,∴M为CD的中点,得=(+)=(2+)=(1,)又∵,∴=+=(,)∴=1×+×=故答案为:【点评】本题在含有60度角的菱形中,计算向量的数量积,着重考查了向量的数量积坐标运算和向量在平面几何中的应用等知识,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)已知在三棱锥S﹣ABC中,∠ACB=90°,又SA⊥平面ABC,AD⊥SC于D,求证:AD⊥平面SBC.参考答案:考点: 直线与平面垂直的判定.专题: 证明题.分析: 要证明AD⊥平面SBC,只要证明AD⊥SC(已知),AD⊥BC,而结合已知∠ACB=90°,又SA⊥平面ABC,及线面垂直的判定定理及性质即可证明解答: 证明:∵SA⊥面ABC,∴BC⊥SA;∵∠ACB=90°,即AC⊥BC,且AC、SA是面SAC内的两相交线,∴BC⊥面SAC;又AD?面SAC,∴BC⊥AD,又∵SC⊥AD,且BC、SC是面SBC内两相交线,∴AD⊥面SBC.点评: 本题主要考查了直线与平面垂直,平面与平面垂直的相互转化,线面垂直的判定定理的应用,属于基础试题19.某校办工厂生产学生校服的固定成本为20000元,每生产一件需要增加投入100元,已知总收益R(x)满足函数R(x)=,其中x是校服的月产量,问:(1)将利润表示为关于月产量x的函数f(x);(2)当月产量为何值时,工厂所获利润最大?最大利润为多少元?(总收益=总成本+利润).参考答案:【考点】函数模型的选择与应用.【分析】(1)由题意,由总收益=总成本+利润可知,分0≤x≤400及x>400求利润,利用分段函数表示;(2)在0≤x≤400及x>400分别求函数的最大值或取值范围,从而确定函数的最大值.从而得到最大利润.【解答】解:(1)由题意,当0≤x≤400时,f(x)=400x﹣0.5x2﹣20000﹣100x=300x﹣0.5x2﹣20000;当x>400时,f(x)=80000﹣100x﹣20000=60000﹣100x;故f(x)=;(2)当0≤x≤400时,f(x)=300x﹣0.5x2﹣20000;当x==300时,f(x)max=25000;当x>400时,f(x)=60000﹣100x<60000﹣40000=20000;故当月产量为300件时,工厂所获利润最大,最大利润为25000元.20.(本小题满分12分)
根据市场调查,某商品在最近40填内的价格P与时间的关系用图(1)中的一条折线表示,销售量Q与时间t的关系用图(2)中的线段表示(1)分别写出图(1)表示的价格与时间的函数关系,图(2)表示的销售量与时间的函数关系式。(2)这种商品的销售额S(销售量与价格之积)的最大值及此事的时间。参考答案:21..(满分12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f(x)(万件)如表所示:
(1)建系,画出2000~2003年该企业年产量的散点图;
(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.
(3)2013年(即x=14)因受到某外国对我国该产品反倾销的影响,年产量应减少参考答案:(3)f(14)=×14+=23.5由题意知,2013年的年产量约为23.5×70%=16.45(万件),即2013年的年产量应约为16.45万件.22.
已知圆,直线过定点A(1,0).(1)若与圆C相切,求的方程;
(2)若的倾斜角为,与圆C相交于P,Q两点,求线段PQ的中点M的坐标;(3)若与圆C相交于P,Q两点,求三角形CPQ的面积的最大值,并求此时的直线方程参考答案:解:(1)解:①若直线的斜率不存在,则直线,圆的圆心坐标(3,4),半径为2,符合题意..............................................................................................................(2分)
②若直线斜率存在,设直线为,即.由题意知,圆心(3,4)到已知直线的距离等于半径2,即:,
解之得
.所求直线方程是:,或........(5分)
(2)直线方程为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版安全防范设备安装与保安人员劳务合同2篇
- 2025版太阳能光伏发电系统安装与安全检验合同3篇
- 《养老保险宣传方案》课件
- 2025年度个人投资理财合同4篇
- 2025版万科物业知识共享与培训服务合同3篇
- 2025版户外广告牌清洗及维护服务合同3篇
- 2025版司机车辆维护保养合同3篇
- 二零二五年度大数据分析服务借款合同协议2篇
- 2025年度铝单板智能制造技术改造项目合同4篇
- 2025版我国行政救济制度优化与执行监督合同3篇
- 2025-2030年中国陶瓷电容器行业运营状况与发展前景分析报告
- 二零二五年仓储配送中心物业管理与优化升级合同3篇
- 2025届厦门高三1月质检期末联考数学答案
- 音乐作品录制许可
- 江苏省无锡市2023-2024学年高三上学期期终教学质量调研测试语文试题(解析版)
- 拉萨市2025届高三第一次联考(一模)英语试卷(含答案解析)
- 开题报告:AIGC背景下大学英语教学设计重构研究
- 师德标兵先进事迹材料师德标兵个人主要事迹
- 连锁商务酒店述职报告
- 《实践论》(原文)毛泽东
- 第三单元名著导读《红星照耀中国》(公开课一等奖创新教学设计+说课稿)
评论
0/150
提交评论