版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知各个顶点都在同一球面上的正方体的棱长为2,则这个球的表面积为()A. B. C. D.2.在等差数列中,若,,则()A. B.0 C.1 D.63.如直线与平行但不重合,则的值为().A.或2 B.2 C. D.4.已知向量,,若,则实数a的值为A. B.2或 C.或1 D.5.在等差数列an中,a1=1,aA.13 B.16 C.32 D.356.某小组共有5名学生,其中男生3名,女生2名,现选举2名代表,则恰有1名女生当选的概率为()A. B. C. D.7.集合,,则=()A. B. C. D.8.设的内角,,的对边分别为,,.若,,,且,则()A. B. C. D.9.已知等差数列{an}的前n项和为,满足S5=S9,且a1>0,则Sn中最大的是()A. B. C. D.10.在平面直角坐标系xOy中,直线的倾斜角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.利用数学归纳法证明不等式“”的过程中,由“”变到“”时,左边增加了_____项.12.已知点,点,则________.13.已知向量,.若向量与垂直,则________.14.已知等差数列的前项和为,若,则=_______15.圆锥的底面半径是3,高是4,则圆锥的侧面积是__________.16.的内角的对边分别为,,,若的面积为,则角_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知.(1)求的值;(2)若,求的值.18.某运动爱好者对自己的步行运动距离(单位:千米)和步行运动时间(单位:分钟)进行统计,得到如下的统计资料:如果与存在线性相关关系,(1)求线性回归方程(精确到0.01);(2)将分钟的时间数据称为有效运动数据,现从这6个时间数据中任取3个,求抽取的3个数据恰有两个为有效运动数据的概率.参考数据:,参考公式:,.19.已知三棱锥中,,.若平面分别与棱相交于点且平面.求证:(1);(2).20.已知函数,(1)若,求a的值,并判断的奇偶性;(2)求不等式的解集.21.已知数列满足:.(1)若为等差数列,求的通项公式;(2)若单调递增,求的取值范围;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
先求出外接球的半径,再求球的表面积得解.【详解】由题得正方体的对角线长为,所以.故选A【点睛】本题主要考查多面体的外接球问题和球的表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.2、C【解析】
根据等差数列性质得到答案.【详解】等差数列中,若,【点睛】本题考查了等差数列的性质,属于简单题.3、C【解析】
两直线斜率相等,且截距不相等。【详解】解析:由题意得,,解得或2,经检验时两直线重合,故.故选C.【点睛】本题考查两直线平行,属于基础题.4、C【解析】
根据题意,由向量平行的坐标表示公式可得,解可得a的值,即可得答案.【详解】根据题意,向量,,若,则有,解可得或1;故选C.【点睛】本题考查向量平行的坐标表示方法,熟记平行的坐标表示公式得到关于a的方程是关键,是基础题5、D【解析】
直接利用等差数列的前n项和公式求解.【详解】数列an的前5项和为5故选:D【点睛】本题主要考查等差数列的前n项和的计算,意在考查学生对该知识的理解掌握水平,属于基础题.6、B【解析】
记三名男生为,两名女生为,分别列举出基本事件,得出基本事件总数和恰有1名女生当选包含的基本事件个数,即可得解.【详解】记三名男生为,两名女生为,任选2名所有可能情况为,共10种,恰有一名女生的情况为,共6种,所以恰有1名女生当选的概率为.故选:B【点睛】此题考查根据古典概型求概率,关键在于准确计算出基本事件总数,和某一事件包含的基本事件个数.7、C【解析】
根据交集定义直接求解可得结果.【详解】根据交集定义知:故选:【点睛】本题考查集合运算中的交集运算,属于基础题.8、B【解析】由余弦定理得:,所以,即,解得:或,因为,所以,故选B.考点:余弦定理.9、B【解析】
由S5=S9可得a7+a8=0,再结合首项即可判断Sn最大值【详解】依题意,由S5=S9,a1>0,所以数列{an}为递减数列,且S9-S5=a6+a7+a8+a9=2(a7+a8)=0,即a7+a8=0,所以a7>0,a8<0,所以则Sn中最大的是S7,故选:B.【点睛】本题考查等差数列Sn最值的判断,属于基础题10、B【解析】
设直线的倾斜角为,,,可得,解得.【详解】设直线的倾斜角为,,.,解得.故选:B.【点睛】本题考查直线的倾斜角与斜率之间的关系、三角函数求值,考查推理能力与计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
分析题意,根据数学归纳法的证明方法得到时,不等式左边的表示式是解答该题的突破口,当时,左边,由此将其对时的式子进行对比,得到结果.【详解】当时,左边,当时,左边,观察可知,增加的项数是,故答案是.【点睛】该题考查的是有关数学归纳法的问题,在解题的过程中,需要明确式子的形式,正确理解对应式子中的量,认真分析,明确哪些项是添的,得到结果.12、【解析】
直接利用两点间的距离公式求解即可.【详解】点A(2,1),B(5,﹣1),则|AB|.故答案为:.【点睛】本题考查两点间的距离公式的应用,基本知识的考查.13、7【解析】
由与垂直,则数量积为0,求出对应的坐标,计算即可.【详解】,,,又与垂直,故,解得,解得.故答案为:7.【点睛】本题考查通过向量数量积求参数的值.14、【解析】
利用等差数列前项和,可得;利用等差数列的性质可得,然后求解三角函数值即可.【详解】等差数列的前项和为,因为,所以;又,所以.故答案为:.【点睛】本题考查等差数列的前项和公式和等差数列的性质的应用,熟练掌握和若,则是解题的关键.15、【解析】分析:由已知中圆锥的底面半径是,高是,由勾股定理,我们可以计算出圆锥的母线长,代入圆锥侧面积公式,即可得到结论.详解:圆锥的底面半径是,高是,圆锥的母线长,则圆锥侧面积公式,故答案为.点睛:本题主要考查圆锥的性质与圆锥侧面积公式,意在考查对基本公式的掌握与理解,属于简单题.16、【解析】
根据三角形面积公式和余弦定理可得,从而求得;由角的范围可确定角的取值.【详解】故答案为:【点睛】本题考查余弦定理和三角形面积公式的应用问题,关键是能够配凑出符合余弦定理的形式,进而得到所求角的三角函数值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)由,得到,再结合向量的模的运算公式,即可求解.(2)因为,得到,求得,结合正切的倍角公式,即可求解.【详解】(1)由题意知,所以,因此;(2)因为,所以,即,因此.【点睛】本题主要考查了向量的坐标运算,向量的模的求解,以及向量的垂直的条件的应用和正切的倍角公式的化简求值等,着重考查了推理与计算能力,属于基础题.18、(1)(2)【解析】
(1)先计算所给数据距离、时间的平均值,,利用公式求,再利用回归方程求.(2)由(1)计算的个数,先求从6个中任取3个数据的总的取法,再计算抽取的3个数据恰有两个为有效运动数据的取法,利用古典概型概率计算公式可得所求.【详解】解:(1)依题意得,所以又因为,故线性回归方程为.(2)将的6个值,代入(1)中回归方程可知,前3个小于30,后3个大于30,所以满足分钟的有效运动数据的共有3个,设3个有效运动数据为,另3个不是有效运动数据为,则从6个数据中任取3个共有20种情况(或一一列举),其中,抽取的3个数据恰有两个为有效运动数据的有9种情况,即,,所以从这6个时间数据中任取3个,抽取的3个数据恰有两个为有效运动数据的概率为.【点睛】本题考查线性回归方程的建立,古典概型的概率,考查数据处理能力,运用知识解决实际问题的能力,属于中档题.19、(1)证明见解析;(2)证明见解析.【解析】
(1)利用线面平行的性质定理可得线线平行,最后利用平行公理可以证明出;(2)利用线面垂直的判定定理可以证明线面垂直,利用线面垂直的性质可以证明线线垂直,利用平行线的性质,最后证明出.【详解】证明(1)因为平面,平面平面,平面,所以有,同理可证出,根据平行公理,可得;(2)因为,,,平面,所以平面,而平面,所以,由(1)可知,所以.【点睛】本题考查了线面平行的性质定理,线面垂直的判定定理、以及平行公理的应用.20、(1),,是偶函数(2)或【解析】
(1)先由已知求出,然后结合利用定义法判断函数的奇偶性即可;(2)讨论当时,当时对数函数的单调性求解不等式即可.【详解】解:(1)由题意得,,即,则,,则,函数的定义域为,则,是偶函数;(2)当时,在上是减函数,,,解得,所以原不等式的解集为;当时,在上是增函数,,,即,所以原不等式的解集为,综上所述,当时,原不等式的解集为,当时,原不等式的解集为.【点睛】本题考查了利用定义法判断函数的奇偶性,主要考查了利用对数函数的单调性求解不等式,重点考查了分类讨论的数学思想方法,属中档题.21、(1)(2)【解析】
(1)设出的通项公式,根据计算出对应的首项和公差,即可求解出通项公式;(2)根据条件得到,得到的奇数项成等差数列,的偶数项也成等差数列,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度智能农业用地转让协议合同范本3篇
- 四川省雅安市2024-2025学年高三上学期11月“零诊”生物试卷2
- 2024年度城市综合体项目股权变更及合作开发合同3篇
- 2024年度技术转移与成果转化合同4篇
- 2024年度城市道路施工围板租赁及维护服务合同3篇
- 2024年工程竣工验收申请书3篇
- 2024年收益优先投资协议3篇
- 心脏康复的营养处方
- 2024年度投标保证金种类与流程详解合同3篇
- 2024版二手房买卖及翻新工程委托协议3篇
- 江苏开放大学本科财务管理专业060111马克思主义基本原理期末试卷
- 商务英语写作1(山东联盟)智慧树知到期末考试答案章节答案2024年山东管理学院
- 2024年辽宁农业职业技术学院单招职业适应性测试题库审定版
- 遇见朗读者智慧树知到期末考试答案章节答案2024年哈尔滨师范大学
- 中班音乐《小看戏》课件
- 电大财务大数据分析编程作业2
- 葡萄糖醛酸在药物开发中的应用
- 体温表水银泄露的应急预案
- 导尿管相关尿路感染预防与控制技术指南(试行)-解读
- 餐厅、食堂餐饮服务方案(技术标)
- (正式版)JBT 7122-2024 交流真空接触器 基本要求
评论
0/150
提交评论