山西农业大学附属中学2023年数学高一第二学期期末学业水平测试试题含解析_第1页
山西农业大学附属中学2023年数学高一第二学期期末学业水平测试试题含解析_第2页
山西农业大学附属中学2023年数学高一第二学期期末学业水平测试试题含解析_第3页
山西农业大学附属中学2023年数学高一第二学期期末学业水平测试试题含解析_第4页
山西农业大学附属中学2023年数学高一第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在学习等差数列时,我们由,,,,得到等差数列的通项公式是,象这样由特殊到一般的推理方法叫做()A.不完全归纳法 B.数学归纳法 C.综合法 D.分析法2.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,21,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列称为“斐波那契数列”,则().A.1 B.2019 C. D.3.已知,则向量在方向上的投影为()A. B. C. D.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.恰有一个红球与恰有二个红球D.至少有一个红球与至少有一个白球5.直线过点,且与以为端点的线段总有公共点,则直线斜率的取值范围是()A. B. C. D.6.已知向量,,则()A. B. C. D.7.已知不同的两条直线m,n与不重合的两平面,,下列说法正确的是()A.若,,则B.若,,则C.若,,则D.若,,则8.是边AB上的中点,记,,则向量()A. B.C. D.9.用长为4,宽为2的矩形做侧面围成一个圆柱,此圆柱轴截面面积为()A.8 B. C. D.10.若直线:与直线:平行,则的值为()A.-1 B.0 C.1 D.-1或1二、填空题:本大题共6小题,每小题5分,共30分。11.若点为圆的弦的中点,则弦所在的直线的方程为___________.12.当,时,执行完如图所示的一段程序后,______.13.如图,货轮在海上以的速度沿着方位角(从指北方向顺时针转到目标方向线的水平角)为150°的方向航行.为了确定船位,在点B观察灯塔A的方位角是120°,航行半小时后到达C点,观察灯塔A的方位角是75°,则货轮到达C点时与灯塔A的距离为______nmile14.已知圆:,若对于圆:上任意一点,在圆上总存在点使得,则实数的取值范围为__________.15.已知角的终边上一点P的坐标为,则____.16.若点,是圆C:上不同的两点,且,则的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.16种食品所含的热量值如下:111123123164430190175236430320250280160150210123(1)求数据的中位数与平均数;(2)用这两种数字特征中的哪一种来描述这个数据集更合适?18.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;19.已知圆A:,圆B:.(Ⅰ)求经过圆A与圆B的圆心的直线方程;(Ⅱ)已知直线l:,设圆心A关于直线l的对称点为,点C在直线l上,当的面积为14时,求点C的坐标.20.已知.(1)解关于的不等式;(2)若不等式的解集为,求实数,的值.21.某企业用180万元购买一套新设备,该套设备预计平均每年能给企业带来100万元的收入,为了维护设备的正常运行,第一年需要各种维护费用10万元,且从第二年开始,每年比上一年所需的维护费用要增加10万元(1)求该设备给企业带来的总利润(万元)与使用年数的函数关系;(2)试计算这套设备使用多少年,可使年平均利润最大?年平均利润最大为多少万元?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据题干中的推理由特殊到一般的推理属于归纳推理,但又不是数学归纳法,从而可得出结果.【详解】本题由前三项的规律猜想出一般项的特点属于归纳法,但本题并不是数学归纳法,因此,本题中的推理方法是不完全归纳法,故选:A.【点睛】本题考查归纳法的特点,判断时要区别数学归纳法与不完全归纳法,考查对概念的理解,属于基础题.2、A【解析】

计算部分数值,归纳得到,计算得到答案.【详解】;;;…归纳总结:故故选:【点睛】本题考查了数列的归纳推理,意在考查学生的推理能力.3、B【解析】

根据向量夹角公式求得夹角的余弦值;根据所求投影为求得结果.【详解】由题意得:向量在方向上的投影为:本题正确选项:【点睛】本题考查向量在方向上的投影的求解问题,关键是能够利用向量数量积求得向量夹角的余弦值.4、C【解析】

从装有5个红球和3个白球的口袋内任取3个球,不同的取球情况共有以下几种:3个球全是红球;2个红球和1个白球;1个红球2个白球;3个全是白球.选项A中,事件“都是红球”是事件“至少有一个红球”的子事件;选项B中,事件“至少有一个红球”与事件“都是白球”是对立事件;选项D中,事件“至少有一个红球”与事件“至少有一个白球”的事件为“2个红球1个白球”与“1个红球2个白球”;选项C中,事件“恰有一个红球”与事件“恰有2个红球”互斥不对立,故选C.5、C【解析】

求出,判断当斜率不存在时是否满足题意,满足两数之外;不满足两数之间.【详解】,当斜率不存在时满足题意,即【点睛】本题主要考查斜率公式的应用,属于基础题.6、D【解析】

根据平面向量的数量积,计算模长即可.【详解】因为向量,,则,,故选:D.【点睛】本题考查了平面向量的数量积与模长公式的应用问题,是基础题.7、C【解析】

依次判断每个选项的正误得到答案.【详解】若,,则或A错误.若,,则或,B错误若,,则,正确若,,则或,D错误故答案选C【点睛】本题考查了线面关系,找出反例是解题的关键.8、C【解析】由题意得,∴.选C.9、B【解析】

分别讨论当圆柱的高为4时,当圆柱的高为2时,求出圆柱轴截面面积即可得解.【详解】解:当圆柱的高为4时,设圆柱的底面半径为,则,则,则圆柱轴截面面积为,当圆柱的高为2时,设圆柱的底面半径为,则,则,则圆柱轴截面面积为,综上所述,圆柱的轴截面面积为,故选:B.【点睛】本题考查了圆柱轴截面面积的求法,属基础题.10、C【解析】

两直线平行表示两直线斜率相等,写出斜率即可算出答案.【详解】显然,,.所以,解得,又时两直线重合,所以.故选C【点睛】此题考查直线平行表示直线斜率相等,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解析】

利用垂径定理,即圆心与弦中点连线垂直于弦.【详解】圆标准方程为,圆心为,,∵是中点,∴,即,∴的方程为,即.故答案为.【点睛】本题考查垂径定理.圆中弦问题,常常要用垂径定理,如弦长(其中为圆心到弦所在直线的距离).12、1【解析】

模拟程序运行,可得出结论.【详解】时,满足,所以.故答案为:1.【点睛】本题考查程序框图,考查条件结构,解题时模拟程序运行即可.13、【解析】

通过方位角定义,求出,,利用正弦定理即可得到答案.【详解】根据题意,可知,,,因此可得,由正弦定理得:,求得,即答案为.【点睛】本题主要考查正弦定理的实际应用,难度不大.14、【解析】

由,知为圆的切线,所以两圆外离,即圆心距大于两半径之和,代入方程即可。【详解】由,知为圆的切线,即在圆上任意一点都可以向圆作切线,当两圆外离时,满足条件,所以,,即,化简,得:,解得:或.【点睛】和圆半径所成夹角为,即是圆的切线,两圆外离表示圆心距大于两半径之和。15、【解析】

由已知先求,再由三角函数的定义可得即可得解.【详解】解:由题意可得点到原点的距离,,由三角函数的定义可得,,,此时;故答案为.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.16、【解析】

由,再结合坐标运算即可得解.【详解】解:因为点,是圆C:上不同的两点,则,,又所以,即,故答案为:.【点睛】本题考查了向量模的运算,重点考查了运算能力,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)中位数为:,平均数为:;(2)用平均数描述这个数据更合适.【解析】

(1)根据中位数和平均数的定义计算即可;(2)根据平均数和平均数的优缺点进行选择即可.【详解】(1)将数据从小到大排列得:111,123,123,123,150,160,164,175,190,210,236,250,280,320,430,430.所以中位数为:,平均数为:;(2)用平均数描述这个数据更合适,理由如下:平均数反映的是总体的一个情况,中位数只是数列从小到大排列得到的最中间的一个数或两个数,所以平均数更能反映总体的一个整体情况.【点睛】本题考查数据的数字特征的计算及应用,考查基础知识和基本技能,属于常考题.18、(Ⅰ)0.4;(Ⅱ)20.【解析】

(1)首先可以根据频率分布直方图得出样本中分数不小于的频率,然后算出样本中分数小于的频率,最后计算出分数小于的概率;(2)首先计算出样本中分数不小于的频率,然后计算出分数在区间内的人数,最后计算出总体中分数在区间内的人数。【详解】(1)根据频率分布直方图可知,样本中分数不小于的频率为,所以样本中分数小于的频率为.所以从总体的名学生中随机抽取一人,其分数小于的概率估计为。(2)根据题意,样本中分数不小于的频率为,分数在区间内的人数为,所以总体中分数在区间内的人数估计为。【点睛】遇到频率分布直方图问题时需要注意:在频率分布直方图中,小矩形的高表示频率/组距,而不是频率;利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和。19、(I)(Ⅱ)或【解析】

(Ⅰ)由已知求得,的坐标,再由直线方程的两点式得答案;(Ⅱ)求出的坐标,再求出以及所在直线方程,设,利用点到直线的距离公式求出到所在直线的距离,代入三角形面积公式解得值,进而可得的坐标.【详解】(Ⅰ)将圆:化为:,所以,圆:化为:,所以,所以经过圆与圆的圆心的直线方程为:,即.(Ⅱ)如图,设,由题意可得,解得,即,∴,所在直线方程为,即,设,则到所在直线的距离,由,解得或,∴点的坐标为或.【点睛】本题考查直线与圆位置关系的应用,考查点关于直线的对称点的求法,考查运算求解能力,属于中档题.20、(1);(2)或.【解析】

(1),再解一元二次不等式即可;(2)由题意得,,代入即可求出实数,的值.【详解】(1)∵,∴,∴,解得,∴原不等式的解集为;(2)由题意得,,即,解得或,∴或.【点睛】本题主要考查一元二次不等式的解法,考查三个二次之间的关系,考查转化与化归思想,属于基础题.21、(1),(2)这套设备使用6年,可使年平均

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论