![2023届上海市周浦中学数学高一下期末联考试题含解析_第1页](http://file4.renrendoc.com/view/d4055f8229720dc16b008c416a7edc45/d4055f8229720dc16b008c416a7edc451.gif)
![2023届上海市周浦中学数学高一下期末联考试题含解析_第2页](http://file4.renrendoc.com/view/d4055f8229720dc16b008c416a7edc45/d4055f8229720dc16b008c416a7edc452.gif)
![2023届上海市周浦中学数学高一下期末联考试题含解析_第3页](http://file4.renrendoc.com/view/d4055f8229720dc16b008c416a7edc45/d4055f8229720dc16b008c416a7edc453.gif)
![2023届上海市周浦中学数学高一下期末联考试题含解析_第4页](http://file4.renrendoc.com/view/d4055f8229720dc16b008c416a7edc45/d4055f8229720dc16b008c416a7edc454.gif)
![2023届上海市周浦中学数学高一下期末联考试题含解析_第5页](http://file4.renrendoc.com/view/d4055f8229720dc16b008c416a7edc45/d4055f8229720dc16b008c416a7edc455.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.用辗转相除法,计算56和264的最大公约数是().A.7 B.8 C.9 D.62.已知是的边上的中点,若向量,,则向量等于()A. B. C. D.3.一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或红球的概率是()A.0.3 B.0.55 C.0.7 D.0.754.已知,则三个数、、由小到大的顺序是()A. B.C. D.5.设,且,则的最小值为()A. B. C. D.6.已知满足,则()A.1 B.3 C.5 D.77.已知函数,(),若对任意的(),恒有,那么的取值集合是()A. B. C. D.8.设变量满足约束条件,则目标函数的最大值是()A.7 B.5 C.3 D.29.函数图像的一条对称轴方程为()A. B. C. D.10.等差数列的首项为.公差不为,若成等比数列,则数列的前项和为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列的前三项为,则此数列的通项公式为______12.我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法——“三斜求积术”,即的,其中分别为内角的对边.若,且则的面积的最大值为____.13.已知锐角的外接圆的半径为1,,则的面积的取值范围为_____.14.已知{}是等差数列,是它的前项和,且,则____.15.已知,则的最小值是__________.16.已知、的取值如表所示:01342.24.34.86.7从散点图分析,与线性相关,且,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点,求直线l与圆M的方程.18.已知平面向量(1)若,求;(2)若,求与夹角的余弦值.19.已知,,,求:的值.20.已知为等差数列,且,.(1)求的通项公式;(2)若等比数列满足,,求数列的前项和公式.21.某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)万件与年促销费用万元,满足(为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润(万元)表示为年促销费用(万元)的函数;(2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据辗转相除法计算最大公约数.【详解】因为所以最大公约数是8,选B.【点睛】本题考查辗转相除法,考查基本求解能力.2、C【解析】
根据向量加法的平行四边形法则,以及平行四边形的性质可得,,解出向量.【详解】根据平行四边形法则以及平行四边形的性质,有.故选.【点睛】本题考查向量加法的平行四边形法则以及平行四边形的性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.3、D【解析】
由题意可知摸出黑球的概率,再根据摸出黑球,摸出红球为互斥事件,根据互斥事件的和即可求解.【详解】因为从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是,因为从盒子中摸出1个球为黑球或红球为互斥事件,所以摸出黑球或红球的概率,故选D.【点睛】本题主要考查了两个互斥事件的和事件,其概率公式,属于中档题.4、C【解析】
比较三个数、、与的大小关系,再利用指数函数的单调性可得出、的大小,可得出这三个数的大小关系.【详解】,,,,且,函数为减函数,所以,,即,,因此,,故选C.【点睛】本题考查指数幂的大小关系,常用的方法有如下几种:(1)底数相同,指数不同,利用同底数的指数函数的单调性来比较大小;(2)指数相同,底数不同,利用同指数的幂函数的单调性来比较大小;(3)底数和指数都不相同时,可以利用中间值法来比较大小.5、D【解析】
本题首先可将转化为,然后将其化简为,最后利用基本不等式即可得出结果.【详解】,当且仅当,即时成立,故选D.【点睛】本题考查利用基本不等式求最值,基本不等式公式为,考查化归与转化思想,是简单题.6、B【解析】
已知两个边和一个角,由余弦定理,可得。【详解】由题得,,,代入,化简得,解得(舍)或.故选:B【点睛】本题考查用余弦定理求三角形的边,是基础题。7、A【解析】当时,,画出图象如下图所示,由图可知,时不符合题意,故选.【点睛】本题主要考查含有绝对值的不等式的解法,考查选择题的解题策略中的特殊值法.主要的需要满足的是,根据不等式的解法,大于在中间,小于在两边,可化简为,左右两边为二次函数,中间可以由对数函数图象平移得到,由此画出图象验证是否符合题意.8、B【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出约束条件,表示的可行域,如图,由可得,将变形为,平移直线,由图可知当直经过点时,直线在轴上的截距最大,最大值为,故选B.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.9、B【解析】
对称轴为【详解】依题意有解得故选B【点睛】本题考查的对称轴,属于基础题。10、A【解析】
根据等比中项定义可得;利用和表示出等式,可构造方程求得;利用等差数列求和公式求得结果.【详解】由题意得:设等差数列公差为,则即:,解得:本题正确选项:【点睛】本题考查等差数列基本量的计算,涉及到等比中项、等差数列前项和公式的应用;关键是能够构造方程求出公差,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意可得,解得.
∴等差数列的前三项为-1,1,1.
则1.
故答案为.12、【解析】
由已知利用正弦定理可求,代入“三斜求积”公式即可求得答案.【详解】因为,所以整理可得,由正弦定理得因为,所以所以当时,的面积的最大值为【点睛】本题用到的知识点有同角三角函数的基本关系式,两角和的正弦公式,正弦定理等,考查学生分析问题的能力和计算整理能力.13、【解析】
由已知利用正弦定理可以得到b=2sinB,c=2sin(﹣B),利用三角形面积公式,三角函数恒等变换的应用可求S△ABC═sin(2B﹣)+,由锐角三角形求B的范围,进而利用正弦函数的图象和性质即可得解.【详解】解:∵锐角△ABC的外接圆的半径为1,A=,∴由正弦定理可得:,可得:b=2sinB,c=2sin(﹣B),∴S△ABC=bcsinA=×2sinB×2sin(﹣B)×=sinB(cosB+sinB)=sin(2B﹣)+,∵B,C为锐角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案为:(1,].【点睛】本题主要考查了正弦定理,三角形面积公式,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了计算能力和转化思想,属于中档题.14、【解析】
根据等差数列的性质得,由此得解.【详解】解:由题意可知,;同理。故.故答案为:【点睛】本题考查了等差数列的性质,属于基础题.15、【解析】分析:利用题设中的等式,把的表达式转化成,展开后,利用基本不等式求得y的最小值.详解:因为,所以,所以(当且仅当时等号成立),则的最小值是,总上所述,答案为.点睛:该题考查的是有关两个正数的整式形式和为定值的情况下求其分式形式和的最值的问题,在求解的过程中,注意相乘,之后应用基本不等式求最值即可,在做乘积运算的时候要注意乘1是不变的,如果不是1,要做除法运算.16、【解析】
根据数据表求解出,代入回归直线,求得的值.【详解】根据表中数据得:,又由回归方程知回归方程的斜率为截距本题正确结果:【点睛】本题考查利用回归直线求实际数据,关键在于明确回归直线恒过,从而可构造出关于的方程.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2),或,.【解析】
(1)设,.由可得,则.又,故.因此的斜率与的斜率之积为,所以.故坐标原点在圆上.(2)由(1)可得.故圆心的坐标为,圆的半径.由于圆过点,因此,故,即,由(1)可得.所以,解得或.当时,直线的方程为,圆心的坐标为,圆的半径为,圆的方程为.当时,直线的方程为,圆心的坐标为,圆的半径为,圆的方程为.【名师点睛】直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情况.中点弦问题,可以利用“点差法”,但不要忘记验证或说明中点在曲线内部.18、(1)(2)【解析】
(1)由题可得,解出,,进而得出答案.(2)由题可得,,再由计算得出答案,【详解】因为,所以,即解得所以(2)若,则所以,,,所以【点睛】本题主要考查的向量的模以及数量积,属于简单题.19、【解析】
求出和的取值范围,利用同角三角函数的基本关系求出和的值,然后利用两角差的余弦公式可求出的值.【详解】,则,且,,,,,,,因此,.故答案为:.【点睛】本题考查利用两角差的余弦公式求值,解题的关键就是利用已知角来表示所求角,考查计算能力,属于中等题.20、(1);(2).【解析】
本试题主要是考查了等差数列的通项公式的求解和数列的前n项和的综合运用.、(1)设公差为,由已知得解得,(2),等比数列的公比利用公式得到和.21、(1);(2)厂家2020年的促销费用投入3万元时,厂家的利润最大,为21万元.【解析】
(1)由不搞促销活动,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学四年级数学三位数乘两位数单元监控训练题
- 信息安全运维月报
- 志愿填报指南
- 英语全球通行
- 传媒融合电商
- 河南省郑州市惠济区2024-2025学年七年级上学期期末语文试题(解析版)
- 职中学生会申请书
- 银行评级申请书
- 二级建造师之二建建设工程法规及相关知识题库【全国】
- 初级银行管理-银行专业初级《银行管理》模拟试卷2
- 开封市第一届职业技能大赛健康照护项目技术文件(国赛)
- 饮酒与糖尿病
- 大学体育与健康 教案 保健(八段锦)4
- 非遗资源数据库建设
- 公路电子收费系统安装合同范本
- 医院培训课件:《伤口评估与测量》
- 期末试卷(试题)-2024-2025学年四年级上册数学沪教版
- 小学五年级美术《青花瓷》
- 醇基燃料突发事故应急预案
- 《第一单元口语交际:即兴发言》教案-2023-2024学年六年级下册语文统编版
- 情侣自愿转账赠与协议书范本
评论
0/150
提交评论