湖北省武汉市钢城德才中学2021年高三数学文联考试卷含解析_第1页
湖北省武汉市钢城德才中学2021年高三数学文联考试卷含解析_第2页
湖北省武汉市钢城德才中学2021年高三数学文联考试卷含解析_第3页
湖北省武汉市钢城德才中学2021年高三数学文联考试卷含解析_第4页
湖北省武汉市钢城德才中学2021年高三数学文联考试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉市钢城德才中学2021年高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图是某几何体的三视图,则该几何体的外接球的表面积为(

)A.24π

B.36π

C.40π

D.400π参考答案:C几何体为三棱锥,如图,底面为顶角为120度的等腰三角形BCD,侧棱AC垂直底面,,设三角形BCD外接圆圆心为O,则,因此外接球的半径为,即外接球的表面积为,选C.点睛:涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.2.设集合

A∪(CUB)=A.{1}

B.{1,2}

C.{2}

D.{0,1,2}参考答案:D3.若复数在复平面内的对应点关于虚轴对称,,则(

)A.i B.-i C.1 D.-1参考答案:B【分析】利用已知求得,再利用复数的乘法、除法运算计算即可得解。【详解】,复数在复平面内的对应点关于虚轴对称,,故选:B【点睛】本题主要考查了复数的对称关系,还考查了复数的除法、乘法运算,属于基础题。4.如右图给出了一个算法流程图,该算法流程图的功能是A.求三个数中最大的数

B.求三个数中最小的数C.按从小到大排列

D.按从大到小排列参考答案:B两个选择框都是挑选较小的值5.

设为偶函数,对于任意的的数都有,已知,那么等于

(

)A.2

B.-2

C..8

D.-8参考答案:C6.把方程化为以t为参数的参数方程是

)A.

B.

C.

D.参考答案:A略7.设复数z满足,则(

)A.

B.

C.

D.参考答案:A8.(5分)函数的定义域为()A.(0,+∞)B.(1,+∞)C.(0,1)D.(0,1)∪(1,+∞)参考答案:考点:函数的定义域及其求法.专题:函数的性质及应用.分析:由函数的解析式可得log2x≠0,即,由此求得函数的定义域.解答:由函数的解析式可得log2x≠0,∴,故函数的定义域(0,1)∪(1,+∞),故选D.点评:本题主要考查函数的定义域的求法,对数函数的定义域,属于基础题.9.函数的值域是

A.R

B.(1,2)

C.[2,+∞)D.(-,l)(2,+)参考答案:A10.

存在整数n,使+是整数的质数(

)

(A)不存在

(B)只有一个

(C)多于一个,但为有限个

(D)有无穷多个参考答案:D解:如果p为奇质数,p=2k+1,则存在n=k2(k∈N+),使+=2k+1.故选D.二、填空题:本大题共7小题,每小题4分,共28分11.已知函数f(x)=2sin(ωx)(ω>0)的最小正周期为π,则ω=

,f()=,在(0,π)内满足f(x0)=0的x0=

.参考答案:2;.【考点】正弦函数的图象.【专题】三角函数的图像与性质.【分析】根据三角函数的周期公式求出ω,即可得到结论.【解答】解:∵三角函数的周期是π,则=π,则ω=2,则f(x)=2sin2x,则f()=2sin=2×=,由f(x)=0得sin2x=0,∵x∈(0,π),∴2x∈(0,2π),则2x=π,故x=,故x0=,故答案为:2,,【点评】本题主要考查三角函数的图象和性质,根据三角函数的周期公式求出ω是解决本题的关键.12.设关于x的不等式的解集是,则实数a的取值范围是

。参考答案:13.2008年高考福建省理科数学第11题是:“双曲线()的两个焦点为、,若为其上一点,且,则双曲线离心率的取值范围为:A.(1,3);B.(1,3];C.(3,+∞);D.[3,+∞)”其正确选项是B。若将其中的条件“”更换为“,且”,试经过合情推理,得出双曲线离心率的取值范围是

参考答案:14.已知是平面上两个不共线的向量,向量,.若,则实数m=

.参考答案:略15.系列的纸张规格如图,其特色在于:①A0,A1,A2,…,An所有规格的纸张的长宽比都相同;

②A0对裁后可以得到两张A1An,A1对裁后可以得到两张A2,…,An-1对裁后可以得到两张An.现有每平方厘米重量为克的A0,A1,A2,…,An纸各一张,若A4纸的宽度为厘米,则这()张纸的重量之和等于__________.(单位:克)参考答案:【知识点】数列

D3设每张纸的长宽比为k,则纸的长为ka,则纸的长8a,宽4ka,由,所以的重量为:,而,纸的重量构成以为公比的等比数列,所以,【思路点拨】求出纸张的长宽比,判定,纸的重量构成等比数列,利用等比数列的前n项和公式求得,从而确定结论.

【典例剖析】本题比较典型,求出一张纸的长宽比是关键.

16.已知是偶函数,且

参考答案:1617.函数的定义域为___________参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知直线l的方程为y=x+4,圆C的参数方程为(θ为参数),以原点为极点,x轴正半轴为极轴.建立极坐标系.(Ⅰ)求直线l与圆C的交点的极坐标;(Ⅱ)若P为圆C上的动点.求P到直线l的距离d的最大值.参考答案:【考点】参数方程化成普通方程.【分析】(I)由圆C的参数方程为(θ为参数),利用cos2θ+sin2θ=1化为普通方程,与直线方程联立解得交点坐标,利用可得极坐标.(II)圆心(0,2)到直线l的距离为d1,可得P到直线l的距离d的最大值为d1+r.【解答】解:(I)由圆C的参数方程为(θ为参数),利用cos2θ+sin2θ=1化为:x2+(y﹣2)2=4,联立,解得或.可得极坐标分别为:,.(II)圆心(0,2)到直线l的距离=,∴P到直线l的距离d的最大值为+r=+2.19.选修4-4,坐标系与参数方程

已知在直角坐标系xOy中,直线的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.

(I)求直线的普通方程和曲线C的直角坐标方程;

(Ⅱ)设点P是曲线C上的一个动点,求它到直线的距离d的取值范围.参考答案:(I)直线的普通方程为:;

曲线的直角坐标方程为---------------------------4分(II)设点,则所以的取值范围是.--------------------------10分

略20.已知函数(1)讨论f(x)的单调性;(2)若方程有两个不相等的实数根,求证:参考答案:(1)时,在上是增函数,时,在和上是增函数,在上是减函数

(2)证明见解析【分析】(1)对求导,得到,根据的,对进行分类,分为,和;(2)令,先说明当时,不符合题意,再研究当时,利用导数得到最大值,根据有两个零点,得到,易得,再利用导数证明时,,从而确定范围为,再构造函数,利用导数得到在上单调递减,从而得以证明.【详解】(1)易知的定义域为,且,时,在上恒正,所以在上单调递增,时,对于,①当,即时,,在上是增函数;②当,即时,有两个正根,所以,,单调递增,,,单调递减综上,时,在上是增函数,时,在和上是增函数,在上是减函数

(2)令,方程有两个不相等的实根函数有两个零点,由定义域为且①当时,恒成立,在上单调递增,则至多有一个零点,不符合题意;②当时,得,在上单调递增,在上单调递减要使有两个零点,则,由解得此时易知当时,,令,所以,时,在为增函数,在增函数,,所以,即所以函数在与各存在一个零点综上所述,.∴证明证明时,成立设,则易知在上递减,,在上单调递减,所以.【点睛】本题考查利用导数讨论函数的单调性,利用导数求函数的极值、最值,函数与方程,零点存在定理,属于难题.21.已知全集U=R,非空集合A=,B=.(1)当a=时,求(?UB)∩A;(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.参考答案:解(1)当a=时,A==,B==,∴?UB=.

∴(?UB)∩A=.(2)∵a2+2>a,∴B={x|a<x<a2+2}.①当3a+1>2,即a>时,A={x|2<x<3a+1}.∵p是q的充分条件,∴A?B.∴,即<a≤.②当3a+1=2,即a=时,A=?,不符合题意;③当3a+1<2,即a<时,A={x|3a+1<x<2},由A?B得,∴-≤a<.综上所述,实数a的取值范围是∪.22.在极坐标系中,圆C的方程为,直线l的方程为.(1)若直线l过圆C的圆心,求实数m的值;(2)若,求直线l被圆C所截得的弦长.参考答案:(1);(2)【分析】(1)将直线与圆的极坐标方程化成直角坐标方程后,利用圆心在直线上列式可得.(2)利用点到直线的距离公式和勾股定理可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论