版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省宿迁市泗阳县众兴中学高一数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数f(x)=(a∈R),若f[f(﹣1)]=1,则a=()A. B. C.1 D.2参考答案:A【考点】分段函数的应用.【专题】函数的性质及应用.【分析】根据条件代入计算即可.【解答】解:∵f[f(﹣1)]=1,∴f[f(﹣1)]=f(2﹣(﹣1))=f(2)=a?22=4a=1∴.故选:A.【点评】本题主要考查了求函数值的问题,关键是分清需要代入到那一个解析式中,属于基础题.2.已知集合集合则等于(
)A.
B.
C.
D.
参考答案:A略3.已知a,b为实数,集合M={,1},N={a,0},f:x→x表示把M中的元素x映射到集合N中仍为x,则a+b等于
(
)A-1 B0
C1
D±1参考答案:C略4.若集合,且,则实数的集合(
)A.
B.
C.
D.参考答案:C5.设常数,集合,.若,则的取值范围为()A. B. C. D.参考答案:B略6.函数,若f(a)=1,则a的值是() A.2 B.1 C.1或2 D.1或﹣2参考答案:A【考点】函数的零点;函数的值. 【专题】函数的性质及应用. 【分析】根据分段函数,直接解方程即可得到结论. 【解答】解:若a<2,则由f(a)=1得,3a﹣2=1,即a﹣2=0, ∴a=2.此时不成立. 若a≥2,则由f(a)=1得,log=1, 得a2﹣1=3, 即a2=4, ∴a=2, 故选:A. 【点评】本题主要考查函数值的计算,要对应对a进行分类讨论. 7.函数f(x)=2x+3x的零点所在的一个区间()A.(﹣2,﹣1) B.(﹣1,0) C.(0,1) D.(1,2)参考答案:B【考点】函数零点的判定定理.【分析】判断函数的单调性,利用f(﹣1)与f(0)函数值的大小,通过零点判定定理判断即可.【解答】解:函数f(x)=2x+3x是增函数,f(﹣1)=<0,f(0)=1+0=1>0,可得f(﹣1)f(0)<0.由零点判定定理可知:函数f(x)=2x+3x的零点所在的一个区间(﹣1,0).故选:B.8.函数的值域是
(
)A.
B.
C.
D.参考答案:C9.已知数列满足则等于(
)A.2
B.
C.-3
D.参考答案:C略10.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的底层共有灯A.81盏 B.112盏 C.162盏 D.243盏参考答案:D【分析】从塔顶到塔底每层灯盏数可构成一个公比为3的等比数列,其和为363.由等比数列的知识可得.【详解】从塔顶到塔底每层灯盏数依次记为,此数列是等比数列,公比为3,5项的和为363,则,,∴.故选D.【点睛】本题考查等比数列的应用,解题关键是根据实际意义构造一个等比数列,把问题转化为等比数列的问题.二、填空题:本大题共7小题,每小题4分,共28分11.当a>0且a≠1时,函数必过定点
.参考答案:12.在等比数列{an}中,a1=1,a5=3,则a2a3a4的值为
.参考答案:3略13.设,则的值为
.参考答案:
.
14.已知三棱锥的底面是腰长为2的等腰直角三角形,侧棱长都等于,则其外接球的体积为______.参考答案:【分析】先判断球心在上,再利用勾股定理得到半径,最后计算体积.【详解】三棱锥底面是腰长为2的等腰直角三角形,侧棱长都等于为中点,为外心,连接,平面球心在上设半径为故答案为【点睛】本题考查了三棱锥外接球的体积,意在考查学生的空间想象能力和计算能力.15.已知f(x)=g(x)+2,且g(x)为奇函数,若f(2)=3,则f(-2)=
.参考答案:116.某班级有52名学生,要从中抽取10名学生调查学习情况,若采用系统抽样方法,则此班内每个学生被抽到的机会是______参考答案:17.在△ABC中,角A、B、C的对边分别是a、b.c,且,则B的大小为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)已知(1)若求
;(2)若,夹角为,求;(3)若与垂直,求,的夹角。参考答案:解:(1)记的夹角为
则
又
(2)
(3)
19.某商品在近30天内,每件的销售价格(元)与时间t(天)的函数关系是:,该商品的日销售量Q(件)与时间t(天)的函数关系是Q=-t+40(0<t≤30,),求这种商品日销售金额的最大值,并指出日销售金额最大的一天是30天中的哪一天?
参考答案:解:设日销售额为y元,则略20.已知数列{an}中,a1=3,且an=2an﹣1+2n﹣1(n≥2且n∈N*)(Ⅰ)证明:数列{}为等差数列;(Ⅱ)求数列{an}的前n项和Sn.参考答案:【考点】8H:数列递推式;8E:数列的求和.【分析】(1)整理变形an﹣1=2(an﹣1﹣1)+2n,(n≥2且n∈N*)式两端同除以2n得出:=1=常数,运用等差数列的和求解即可.(2)根据数列的和得出Sn=(1×21+2×22+3×23+…+n×2n)+n,设Tn=1×21+2×22+3×23+…+n×2n,运用错位相减法求解即可.得出Tn,代入即可.【解答】解:(1)∵an=2an﹣1+2n﹣1(n≥2且n∈N*)∴an﹣1=2(an﹣1﹣1)+2n,(n≥2且n∈N*)∴等式两端同除以2n得出:=1=常数,∵a1=3,∴==1,∴数列{}为等差数列,且首项为1,公差为1,(2)∵根据(1)得出=1+(n﹣1)×1=n,an=n×2n+1∴数列{an}的前n项和Sn=(1×21+2×22+3×23+…+n×2n)+n,令Tn=1×21+2×22+3×23+…+n×2n,①2Tn=1×22+2×23+3×24+…+(n﹣1)×2n+n×2n+1,②①﹣②得出:﹣Tn=2+22+23+…+2n﹣n×2n+1,∴Tn=n×2n+1﹣2×2n+2,∴Sn=n×2n+1﹣2n+1+2+n【点评】本题考察了数列的递推关系式的运用,错位相减法求解数列的和,考察了学生的分析问题,化简计算的能力.21.甲、乙二人独立破译同一密码,甲破译密码的概率为0.8,乙破译密码的概率为0.7.记事件A:甲破译密码,事件B:乙破译密码.(1)求甲、乙二人都破译密码的概率;(2)求恰有一人破译密码的概率;(3)小明同学解答“求密码被破译的概率”的过程如下:解:“密码被破译”也就是“甲、乙二人中至少有一人破译密码”所以随机事件“密码被破译”可以表示为所以请指出小明同学错误的原因?并给出正确解答过程.参考答案:(1)0.56;(2)0.38;(3)详见解析【分析】(1)由相互独立事件概率乘法公式求解即可;(2)恰有一人破译密码表示为,再利用互斥事件概率加法公式和相互独立事件概率乘法公式求解;(3)小明求解错误的原因是事件和事件不互斥,然后将甲、乙二人中至少有一人破译密码表示为,再利用互斥事件概率加法公式和相互独立事件概率乘法公式求解.【详解】(1)由题意可知,,且事件A,B相互独立,事件“甲、乙二人都破译密码”可表示,所以;(2)事件“恰有一人破译密码”可表示为,且,互斥所以(3)小明同学错误在于事件A,B不互斥,而用了互斥事件的概率加法公式正确解答过程如下“密码被破译”也就是“甲、乙二人中至少有一人破译密码”可以表示为,且,,两两互斥所以【点睛】本题主要考查概率的求法、互斥事件概率加法公式和相互独立事件概率乘法公式,考查学生运算求解能力,属于基础题.22.某个公园有个池塘,其形状为直角三角形ABC,米,BC=100米;(1)现在准备养一批供游客观赏的鱼,分别在AB,BC,CA上取点D,E,F,使得EF∥AB,EF⊥ED,在△DEF内喂鱼,求△DEF面积的最大值;(2)现在准备新建造一个荷塘,分别在AB,BC,CA上取点D,E,F,建造△DEF走廊(不考虑宽度)供游客休息,且使得△DEF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 模具保养采购合同
- 专业工程服务合同指南
- 钢筋施工劳务分包合同范例
- 格式化的委托书样本
- 提前终止租房合同的终止协议格式
- 电焊条供货合同样本
- 居间合同介绍协议书格式
- 房屋建筑安全施工合同
- 检测站招标文件的节能创新目标
- 房屋使用权租赁转购合同
- 流行病学学习通超星期末考试答案章节答案2024年
- 2024年事业单位考试公共基础知识题库300题(附答案与解析)
- 血液透析远期并发症及处理
- 防范工贸行业典型事故三十条措施解读
- 四川快速INTL2000电梯控制系统电气系统图
- 临床电风暴患者护理要点
- 重庆市水利投资(集团)有限公司招聘笔试题库2024
- 2024-2030年益生菌项目商业计划书
- 城市生命线工程(地下管网、桥梁隧道、窨井盖等)项目资金申请报告-超长期特别国债投资专项
- Tableau数据分析与可视化-第9章-电商行业案例实战
- 《小英雄雨来》《童年》《爱的教育》名著导读(教学设计)-2024-2025学年统编版语文六年级上册
评论
0/150
提交评论