




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年天津青年路中学高三数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息,设定原信息为传输信息为其中,运算规则为例如原信息为,则传输信息为,传输信息在传输过程中受到干扰可能导致接受信息出错,则下列接受信息一定有误的是
参考答案:C略2.函数的大致图象为__________.参考答案:D3.某几何体的三视图如图所示,则该几何体的体积为A.6
B.
C.3
D.参考答案:D略4.“”是数列“为递增数列”的
(
)
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件参考答案:A5.(5分)(2015?万州区模拟)执行如图所示程序框图,则输出的S的值为()A.21B.25C.45D.93参考答案:【考点】:循环结构.【专题】:计算题;算法和程序框图.【分析】:根据框图的流程模拟运行程序,直到满足条件S>10k,跳出循环,计算输出S的值.【解答】:由程序框图知:第一次循环k=1,S=3;第二次循环k=2,S=2×3+3=9;第三次循环k=3,S=2×9+3=21;第四次循环k=4,S=2×21+3=45.满足条件S>10k,跳出循环,输出S=45.故选:C.【点评】:本题考查了循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.6.“”是“直线与直线互相垂直”的
(A)充分不必要条件
(B)必要不充分条件
(C)充要条件
(D)既不充分也不必要条件参考答案:A略7.已知直线与抛物线y2=4x交于A,B两点(A在x轴上方),与x轴交于F点,,则λ﹣μ=()A. B. C. D.参考答案:B【考点】KN:直线与抛物线的位置关系.【分析】直线过抛物线的焦点F(1,0),把直线方程代入抛物线的方程解得A、B的坐标,由,得到3λ+μ=1,2λ﹣μ=0,解方程从而求得λ﹣μ的值.【解答】解:直线过抛物线的焦点F(1,0),把直线方程代入抛物线的方程y2=4x,解得,或,不妨设A(3,2)、B(,﹣).∵,∴(1,0)=(3λ,2λ)+(μ,﹣μ)=(3λ+μ,2λ﹣μ).∴3λ+μ=1,2λ﹣μ=0,∴λ=,μ=,则λ﹣μ=﹣.故选:B.8.在中,,A.4
B.-4
C.-8
D.8参考答案:D9.下列函数中,最小值为2的函数为
(
)A.
B.
C.
D.参考答案:D10.已知向量与的夹角为,且,,若,且,则实数的值为A. B.13 C.6 D.参考答案:D解:,且,.向量与的夹角为,且,,.解得:.故选:.二、填空题:本大题共7小题,每小题4分,共28分11.已知函数,则____________参考答案:312.(几何证明选讲选做题)如图,直角三角形中,,,以为直径的圆交边于点,,则的大小为
.
参考答案:略13.如果一个凸多面体棱锥,那么这个凸多面体的所有顶点所确定的直线共有
条.这些直线中共有对异面直线,则=
;=
。(答案用数字或的解析式表示)参考答案:答案:,12,解析:当多面体的棱数由n增加到n+1时,所确定的直线的条数将增加n+1,由递推关系f(n+1)-f(n)=n+1我们能够求出答案。从图中我们明显看出四棱锥中异面直线的对数为12对。能与棱锥每棱构成异面关系的直线的条数为,进而得到f(n)的表达式14.若a>0,b>0,且函数在x=1处有极值,则ab的最大值
.参考答案:18略15.已知点F是抛物线的焦点,点M为抛物线C上任意一点,过点M向圆作切线,切点分别为A,B,则四边形AFBM面积的最小值为______.参考答案:【分析】画出满足题意的图象,可得M与原点重合时,四边形AFBM面积最小,进而得到答案.【详解】如下图所示:圆的圆心与抛物线的焦点重合,若四边形AFBM的面积最小,则MF最小,即M距离准线最近,故满足条件时,M与原点重合,此时,此时四边形AFBM面积,故答案:.【点睛】本题考查抛物线的标准方程及简单几何性质。16.已知函数且,其中为奇函数,为偶函数,若不等式对任意恒成立,则实数的取值范围是
.参考答案:17.两车在十字路口相遇后,又沿不同方向继续前进,已知A车向北行驶,速率为30km/h,B车向东行驶,速率为40km/h,那么A、B两车间直线距离的增加速率为 .
参考答案:50km/h三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|PA|的最大值.参考答案:【考点】简单曲线的极坐标方程.【分析】(Ⅰ)利用三种方程的转化方法,即可写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,利用正弦函数的单调性即可得出最值.【解答】解:(Ⅰ)直线L的参数方程为(t为参数),普通方程为2x+y﹣6=0,极坐标方程为2ρcosθ+ρsinθ﹣6=0,曲线C的极坐标方程为ρ=,即ρ2+3ρ2cos2θ=4,曲线C的普通方程为=1;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,当sin(θ+45°)=﹣1时,|PA|取得最大值,最大值为.19.如图,在三棱锥中,,,.(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值.参考答案:(Ⅰ)如图,取的中点,连结,.因为为正三角形,所以;因为,所以.又,,平面,所以平面.因为平面,所以.(Ⅱ)解法一:过点作的垂线,垂足为,连结.因为平面,平面,所以平面平面,又平面平面,平面,故平面.所以直线与平面所成角为.在中,,,,由余弦定理得,所以.所以,.又,故,即直线与平面所成角的正弦值为.解法二:如图,以原点,以,为,轴建立空间直角坐标系.可求得,则,,,.平面的一个法向量为,.设直线与平面所成角为,则.20.(本小题满分12分)已知函数(1)求函数的单调区间;(2)若当时(其中),不等式恒成立,求实数的取值范围;(3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围.
参考答案:解析因为所以…….…….……….…….……….………1分令或,所以的单调增区间为和;令或所以的单调减区间为和
…….………4分(2)令或函数在上是连续的,又所以,当时,的最大值为故时,若使恒成立,则
……8分(3)原问题可转化为:方程在区间上恰好有两个相异的实根.令则令解得:当时,在区间上单调递减,当时,在区间上单调递增.在和处连续,又且当时,的最大值是的最小值是在区间上方程恰好有两个相异的实根时,实数的取值范围是:
……12分21.某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(°C)与该小卖部的这种饮料销量y(杯),得到如下数据:日
期1月11日1月12日1月13日1月14日1月15日平均气温x(°C)91012118销量y(杯)2325302621(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;(Ⅱ)请根据所给五组数据,求出y关于x的线性回归方程=x+;(Ⅲ)根据(Ⅱ)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(°C),请预测该奶茶店这种饮料的销量.(参考公式:=,=﹣)参考答案:【考点】BK:线性回归方程.【分析】(Ⅰ)根据题意列举出从5组数据中选取2组数据共有10种情况,每种情况都是可能出现的,满足条件的事件包括的基本事件有4种.根据等可能事件的概率做出结果.(Ⅱ)根据所给的数据,先做出x,y的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程.(Ⅲ)利用线性回归方程,x取7,即可预测该奶茶店这种饮料的销量.【解答】解:(Ⅰ)设“选取的2组数据恰好是相邻2天数据”为事件A,所有基本事件(m,n)(其中m,n为1月份的日期数)有:(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15),共有10种.事件A包括的基本事件有(11,12),(12,13),(13,14),(14,15)共4种.所以为所求.
…6分(Ⅱ)由数据,求得,.由公式,求得,,所以y关于x的线性回归方程为.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省圆创教育教研中心2025届高三三月联合测评语文试题及答案
- 初级中学教师教学能力试题及答案
- 班级环境美化与维护计划
- 生产任务调配计划
- 市场定位与产品发展策略计划
- 急诊科心理干预措施研究计划
- 班级家庭作业的优化方案计划
- 高中美术选修课开设策略计划
- 四年级品德与社会下册 第二单元 生产与生活 2 从电视机的变化说起教学设计 新人教版
- 全面掌握陪诊师考试的试题及答案
- 7不甘屈辱 奋勇抗争-圆明园的诉说(教学设计)-部编版道德与法治五年级下册
- GB/T 20424-2025重有色金属精矿产品中有害元素的限量规范
- 2024年黑龙江省水利投资集团招聘笔试真题
- 2025年长沙轨道交通职业学院单招综合素质考试题库完美版
- 2025美国急性冠脉综合征(ACS)患者管理指南解读课件
- 国家开放大学电大《国际私法》形考任务1-5题库及答案
- 统编历史七年级下册(2024版)第7课-隋唐时期的科技与文化【课件】f
- 脑脊液检查11课件
- 医院股东章程范本
- 全国河大版(三起)小学信息技术第二册第3单元第9课《我是小导游-调整幻灯片版式》教学设计
- 2025年江苏省高职单招《职测》高频必练考试题库400题(含答案)
评论
0/150
提交评论