湖北省武汉为明学校2024学年高二上数学期末联考模拟试题含解析_第1页
湖北省武汉为明学校2024学年高二上数学期末联考模拟试题含解析_第2页
湖北省武汉为明学校2024学年高二上数学期末联考模拟试题含解析_第3页
湖北省武汉为明学校2024学年高二上数学期末联考模拟试题含解析_第4页
湖北省武汉为明学校2024学年高二上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉为明学校2024学年高二上数学期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线过双曲线:的右焦点,在第一、第四象限交双曲线两条渐近线分别于P,Q两点,若∠OPQ=90°(O为坐标原点),则OPQ内切圆的半径为()A. B.C.1 D.2.若存在过点(0,-2)的直线与曲线和曲线都相切,则实数a的值是()A.2 B.1C.0 D.-23.过两点和的直线的斜率为()A. B.C. D.4.已知椭圆上一点到左焦点的距离为,是的中点,则()A.1 B.2C.3 D.45.抛物线型太阳灶是利用太阳能辐射的一种装置.当旋转抛物面的主光轴指向太阳的时候,平行的太阳光线入射到旋转抛物面表面,经过反光材料的反射,这些反射光线都从它的焦点处通过,形成太阳光线的高密集区,抛物面的焦点在它的主光轴上.如图所示的太阳灶中,灶深CD即焦点到灶底(抛物线的顶点)的距离为1m,则灶口直径AB为()A.2m B.3mC.4m D.5m6.由小到大排列的一组数据:,其中每个数据都小于,另一组数据2、的中位数可以表示为()A. B.C. D.7.直线的倾斜角为()A B.C. D.8.函数的部分图像为()A. B.C. D.9.我们知道∶用平行于圆锥母线的平面(不过顶点)截圆锥,则平面与圆锥侧面的交线是抛物线一部分,如图,在底面半径和高均为2的圆锥中,AB、CD是底面圆O的两条互相垂直的直径,E是母线PB的中点,已知过CD与E的平面与圆锥侧面的交线是以E为顶点的圆锥曲线的一部分,则该圆锥曲线的焦点到其准线的距离等于()A. B.C. D.110.已知双曲线的虚轴长是实轴长的2倍,则实数的值是A. B.C. D.11.已知椭圆方程为,点在椭圆上,右焦点为F,过原点的直线与椭圆交于A,B两点,若,则椭圆的方程为()A. B.C. D.12.已知一个几何体的三视图如图,则其外接球的体积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的聚焦特点:从抛物线的焦点发出的光经过抛物线反射后,光线都平行于抛物线的对称轴.另一方面,根据光路的可逆性,平行于抛物线对称轴的光线射向抛物线后的反射光线都会汇聚到抛物线的焦点处.已知抛物线,一条平行于抛物线对称轴的光线从点向左发出,先经抛物线反射,再经直线反射后,恰好经过点,则该抛物线的标准方程为___________.14.设F为抛物线C:的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则的面积为______.15.写出一个公比为3,且第三项小于1的等比数列______16.长方体中,,,已知点H,A,三点共线,且,则点H到平面ABCD的距离为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆C经过、两点,且圆心在直线上(1)求圆C的方程;(2)若直线经过点且与圆C相切,求直线的方程18.(12分)在等差数列中,,.(1)求数列的通项公式;(2)求数列的前n项和.19.(12分)已知双曲线的两个焦点为的曲线C上.(1)求双曲线C的方程;(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程20.(12分)已知的三个顶点的坐标分别为,,(1)求边AC上的中线所在直线方程;(2)求的面积21.(12分)已知直线与双曲线相交于、两点.(1)当时,求;(2)是否存在实数,使以为直径的圆经过坐标原点?若存在,求出的值;若不存在,说明理由.22.(10分)已知是等差数列,是等比数列,且,,,.(1)求的通项公式;(2)设,求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】根据渐近线的对称性,结合锐角三角函数定义、正切的二倍角公式、直角三角形内切圆半径公式进行求解即可.【题目详解】由双曲线标准方程可知:,双曲线的渐近线方程为:,因此,因为∠OPQ=90°,所以三角形是直角三角形,,而,解得:,由双曲线渐近线的对称性可知:,于是有,在直角三角形中,,由勾股定理可知:,设OPQ内切圆的半径为,于是有:,即,故选:B【题目点拨】关键点睛:利用三角形内切圆的性质是解题的关键.2、A【解题分析】在两曲线上设切点,得到切线,又因为(0,-2)在两条切线上,列方程即可.【题目详解】的导函数为,的导函数为,若直线与和的切点分别为(,),,∴过(0,-2)的直线为、,则有,可得故选:A.3、D【解题分析】应用两点式求直线斜率即可.【题目详解】由已知坐标,直线的斜率为.故选:D4、A【解题分析】由椭圆的定义得,进而根据中位线定理得.【题目详解】解:由椭圆方程得,即,因为由椭圆的定义得,,所以,因为是的中点,是的中点,所以.故选:A5、C【解题分析】建立如图所示的平面直角坐标系,设抛物线的方程为,根据是抛物线的焦点,求得抛物线的方程,进而求得的长.【题目详解】由题意,建立如图所示的平面直角坐标系,O与C重合,设抛物线的方程为,由题意可得是抛物线的焦点,即,可得,所以抛物线的方程为,当时,,所以.故选:C.6、C【解题分析】先根据题意对数据进行排列,然后由中位数的定义求解即可【题目详解】因为由小到大排列的一组数据:,其中每个数据都小于,所以另一组数据2、从小到大的排列为,所以这一组数的中位数为,故选:C7、C【解题分析】设直线倾斜角为,则,再结合直线的斜率与倾斜角的关系求解即可.【题目详解】设直线的倾斜角为,则,∵,所以.故选:C8、D【解题分析】先判断奇偶性排除C,再利用排除B,求导判断单调性可排除A.【题目详解】因为,所以为偶函数,排除C;因为,排除B;当时,,,当时,,所以函数在区间上单调递减,排除A.故选:D9、C【解题分析】由圆锥的底面半径和高及E的位置可得,建立适当的平面直角坐标系,可得C的坐标,设抛物线的方程,将C的坐标代入求出抛物线的方程,进而可得焦点到其准线的距离【题目详解】设AB,CD的交点为,连接PO,由题意可得PO⊥面AB,所以PO⊥OB,由题意OB=OP=OC=2,因为E是母线PB的中点,所以,由题意建立适当的坐标系,以BP为y轴以OE为x轴,E为坐标原点,如图所示∶可得∶,设抛物线的方程为y2=mx,将C点坐标代入可得,所以,所以抛物线的方程为∶,所以焦点坐标为,准线方程为,所以焦点到其准线的距离为故选:C10、C【解题分析】由方程表示双曲线知,又双曲线的虚轴长是实轴长的2倍,所以,即,所以故选C.考点:双曲线的标准方程与简单几何性质.11、A【解题分析】根据椭圆的性质可得,则椭圆方程可求.【题目详解】由点在椭圆上得,由椭圆的对称性可得,则,故椭圆方程为.故选:A.12、D【解题分析】根据三视图还原几何体,将几何体补成长方体,计算出几何体的外接球直径,结合球体体积公式即可得解.【题目详解】根据三视图还原原几何体,如下图所示:由图可知,该几何体三棱锥,且平面,将三棱锥补成长方体,所以,三棱锥的外接球直径为,故,因此,该几何体的外接球的体积为.故选:D【题目点拨】方法点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解(2)若球面上四点P,A,B,C构成的三条线段两两互相垂直,一般把有关元素“补形”成为一个球内接长方体,利用求解二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】根据抛物线的聚焦特点,经过抛物线后经过抛物线焦点,再经直线反射后经过点,则根据反射特点,列出相关方程,解出方程即可.【题目详解】设光线与抛物线的交点为,抛物线的焦点为,则可得:抛物线的焦点为:则直线的方程为:设直线与直线的交点为,则有:解得:则过点且垂直于的直线的方程为:根据题意可知:点关于直线的对称点在直线上设点,的中点为,则有:直线垂直于,则有:点在直线上,则有:点在直线上,则有:化简得:又故故答案为:【题目点拨】直线关于直线对称对称,利用中点坐标公式和直线与直线垂直的特点建立方程,根据题意列出隐含的方程是关键14、##2.25##【解题分析】求出直线的方程,与抛物线方程联立后得到两根之和,结合焦点弦弦长公式求出,用点到直线距离公式求高,进而求出三角形面积.【题目详解】易知抛物线中,焦点,直线的斜率,故直线的方程为,代人抛物线方程,整理得.设,则,由抛物线的定义可得弦长,原点到直线的距离,所以面积.故答案为:15、(答案不唯一)【解题分析】由条件确定该等比数列的首项的可能值,由此确定该数列的通项公式.【题目详解】设数列的公比为,则,由已知可得,∴,所以,故可取,故满足条件的等比数列的通项公式可能为,故答案为:(答案不唯一)16、【解题分析】在长方体中,以点A为原点建立空间直角坐标系,利用已知条件求出点H的坐标作答.【题目详解】在长方体中,以点A为原点建立如图所示的空间直角坐标系,则,,因点H,A,三点共线,令,点,则,又,则,解得,所以点到平面ABCD的距离为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)根据圆心在弦的垂直平分线上,先求出弦的垂直平分线的方程与联立可求得圆心坐标,再用两点间的距离公式求得半径,进而求得圆的方程;(2)当直线斜率不存在时,与圆相切,方程为;当直线斜率存在时,设斜率为,写出其点斜式方程,利用圆心到直线的距离等于半径建立方程求解出的值.试题解析:(1)依题意知线段的中点坐标是,直线的斜率为,故线段的中垂线方程是即,解方程组得,即圆心的坐标为,圆的半径,故圆的方程是(2)若直线斜率不存在,则直线方程是,与圆相离,不合题意;若直线斜率存在,可设直线方程是,即,因为直线与圆相切,所以有,解得或所以直线的方程是或.18、(1)(2)【解题分析】(1)根据已知条件求得,由此求得数列的通项公式.(2)令,分和去掉绝对值,根据等差数列的求和公式求得.【小问1详解】设等差数列的公差为,∵,,所以,所以,则.【小问2详解】令,解得,当时,,,当时,.19、(1)双曲线方程为(2)满足条件的直线l有两条,其方程分别为y=和【解题分析】(1)由双曲线焦点可得值,进而可得到的关系式,将点P代入双曲线可得到的关系式,解方程组可求得值,从而确定双曲线方程;(2)求直线方程采用待定系数法,首先设出方程的点斜式,与双曲线联立,求得相交的弦长和O到直线的距离,代入面积公式可得到直线的斜率,求得直线方程试题解析:(1)由已知及点在双曲线上得解得;所以,双曲线的方程为(2)由题意直线的斜率存在,故设直线的方程为由得设直线与双曲线交于、,则、是上方程的两不等实根,且即且①这时,又即所以即又适合①式所以,直线的方程为与20、(1)(2)【解题分析】(1)先求得的中点,由此求得边AC上的中线所在直线方程.(2)结合点到直线距离公式求得的面积.【小问1详解】的中点为,所以边AC上的中线所在直线方程为.【小问2详解】直线的方程为,到直线的距离为,,所以.21、(1);(2)不存在,理由见解析.【解题分析】(1)当时,将直线的方程与双曲线的方程联立,列出韦达定理,利用弦长公式可求得;(2)假设存在实数,使以为直径的圆经过坐标原点,设、,将直线与双曲线的方程联立,列出韦达定理,由已知可得出,利用平面向量数量积的坐标运算结合韦达定理可得出,即可得出结论.【小问1详解】解:设点、,当时,联立,可得,,由韦达定理可得,,所以,.【小问2详解】解:假设存在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论