




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市市八中2024年高二上数学期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某中学高一年级有200名学生,高二年级有260名学生,高三年级有340名学生,为了了解该校高中学生完成作业情况,现用分层抽样的方法抽取一个容量为40的样本,则高二年级抽取的人数为()A.10 B.13C.17 D.262.已知x,y是实数,且,则的最大值是()A. B.C. D.3.下列命题中正确的是()A.若为真命题,则为真命题B.在中“”是“”的充分必要条件C.命题“若,则或”的逆否命题是“若或,则”D.命题,使得,则,使得4.“,”的否定是A., B.,C., D.,5.设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为()A. B.C. D.6.已知函数的导函数为,若的图象如图所示,则函数的图象可能是()A B.C. D.7.在空间直角坐标系中,已知点A(1,1,2),B(-3,1,-2),则线段AB的中点坐标是()A.(-2,1,2) B.(-1,1,0)C.(-2,0,1) D.(-1,1,2)8.在平面直角坐标系中,抛物线上点到焦点的距离为3,则焦点到准线的距离为()A. B.C.1 D.9.若直线l的倾斜角是钝角,则l的方程可能是()A. B.C. D.10.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数到与一般的等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.如数列1,3,6,10,前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列、这样的数列称为二阶等差数列.现有二阶等差数列,其前7项分别为2,3,5,8,12,17,23则该数列的第100项为()A.4862 B.4962C.4852 D.495211.为了更好地研究双曲线,某校高二年级的一位数学老师制作了一个如图所示的双曲线模型.已知该模型左、右两侧的两段曲线(曲线与曲线)为某双曲线(离心率为2)的一部分,曲线与曲线中间最窄处间的距离为,点与点,点与点均关于该双曲线的对称中心对称,且,则()A. B.C. D.12.如图,在正方体中,异面直线与所成的角为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列满足,,,则公差______14.若,满足约束条件,则的最小值为__________15.已知,求_____________.16.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为,点在抛物线上,且点的纵坐标为4,(1)求抛物线的方程;(2)过点作直线交抛物线于两点,试问抛物线上是否存在定点使得直线与的斜率互为倒数?若存在求出点的坐标,若不存在说明理由18.(12分)已知圆,点(1)若点在圆外部,求实数的取值范围;(2)当时,过点的直线交圆于,两点,求面积的最大值及此时直线l的斜率19.(12分)已知函数(a为常数)(1)讨论函数的单调性;(2)不等式在上恒成立,求实数a的取值范围.20.(12分)已知双曲线,直线l与交于P、Q两点(1)若点是双曲线的一个焦点,求的渐近线方程;(2)若点P的坐标为,直线l的斜率等于1,且,求双曲线的离心率21.(12分)已知:(常数);:代数式有意义(1)若,求使“”为真命题的实数的取值范围;(2)若是成立的充分不必要条件,求实数的取值范围22.(10分)在平面直角坐标系中,设椭圆()的离心率是e,定义直线为椭圆的“类准线”,已知椭圆C的“类准线”方程为,长轴长为8.(1)求椭圆C的标准方程;(2)O为坐标原点,A为椭圆C的右顶点,直线l交椭圆C于E,F两不同点(点E,F与点A不重合),且满足,若点P满足,求直线的斜率的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】计算出抽样比可得答案.【题目详解】该校高中学生共有名,所以高二年级抽取的人数名.故选:B.2、D【解题分析】将方程化为圆的标准方程,则的几何意义是圆上一点与点连线的斜率,进而根据直线与圆相切求得答案.【题目详解】方程可化为,表示以为圆心,为半径的圆,的几何意义是圆上一点与点A连线的斜率,设,即,当此直线与圆相切时,斜率最大或最小,当切线位于切线AB时斜率最大.此时,,,所以的最大值为.故选:D3、B【解题分析】A选项,当一真一假时也满足条件,但不满足为真命题;B选项,可以使用正弦定理和大边对大角,大角对大边进行证明;C选项,利用逆否命题的定义进行判断,D选项,特称命题的否定,把存在改为任意,把结论否定,故可判断D选项.【题目详解】若为真命题,则可能均为真,或一真一假,则可能为真命题,也可能为假命题,故A错误;在中,由正弦定理得:,若,则,从而,同理,若,则由正弦定理得,,所以,故在中“”是“”的充分必要条件,B正确;命题“若,则或”的逆否命题是“若且,则”,故C错误;命题,使得,则,使得,故D错误.故选:B4、D【解题分析】通过命题的否定的形式进行判断【题目详解】因为全称命题的否定是特称命题,故“,”的否定是“,”.故选D.【题目点拨】本题考查全称命题的否定,属基础题.5、B【解题分析】根据题中所给的条件,结合抛物线的对称性,可知,从而可以确定出点的坐标,代入方程求得的值,进而求得其焦点坐标,得到结果.【题目详解】因为直线与抛物线交于两点,且,根据抛物线的对称性可以确定,所以,代入抛物线方程,求得,所以其焦点坐标为,故选:B.【题目点拨】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.6、D【解题分析】根据导函数大于,原函数单调递增;导函数小于,原函数单调递减;即可得出正确答案.【题目详解】由导函数得图象可得:时,,所以在单调递减,排除选项A、B,当时,先正后负,所以在先增后减,因选项C是先减后增再减,故排除选项C,故选:D.7、B【解题分析】利用中点坐标公式直接求解【题目详解】在空间直角坐标系中,点,1,,,1,,则线段的中点坐标是,,,1,故选:B.8、D【解题分析】根据给定条件求出抛物线C的焦点、准线,再利用抛物线的定义求出a值计算作答.【题目详解】抛物线的焦点,准线,依题意,由抛物线定义得,解得,所以抛物线焦点到准线的距离为.故选:D9、A【解题分析】根据直线方程,求得直线斜率,再根据倾斜角和斜率的关系,即可判断和选择.【题目详解】若直线的倾斜角为,则,当时,为钝角,当,,当,为锐角;当不存在时,倾斜角为,对A:,显然倾斜角为钝角;对B:,倾斜角为锐角;对C:,倾斜角为锐角;对D:不存在,此时倾斜角为直角.故选:A.10、D【解题分析】根据题意可得数列2,3,5,8,12,17,23,,满足:,,从而利用累加法即可求出,进一步即可得到的值【题目详解】2,3,5,8,12,17,23,后项减前项可得1,2,3,4,5,6,所以,所以.所以.故选:D11、D【解题分析】依题意以双曲线的对称中心为坐标原点建系,设双曲线的方程为,根据已知求得,点纵坐标代入计算即可求得横坐标得出结果.【题目详解】以双曲线的对称中心为坐标原点,建立平面直角坐标系,因为双曲线的离心率为2,所以可设双曲线的方程为,依题意可得,则,即双曲线的方程为.因为,所以的纵坐标为18.由,得,故.故选:D.12、C【解题分析】作出辅助线,找到异面直线所成的角,利用几何性质进行求解.【题目详解】连接与,因为,则为所求,又是正三角形,.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】根据等差数列性质求得,再根据题意列出相关的方程组,解得答案.【题目详解】为等差数列,故由可得:,即,故,故,所以,解得,故答案为:214、【解题分析】作出线性约束条件的可行域,再利用截距的几何意义求最小值;【题目详解】约束条件的可行域,如图所示:目标函数在点取得最小值,即.故答案为:15、【解题分析】根据导数的定义即可求解.【题目详解】,所以,故答案为:.16、160【解题分析】∵某个年级共有980人,要从中抽取280人,∴抽取比例为,∴此样本中男生人数为,故答案为160.考点:本题考查了分层抽样的应用点评:掌握分层抽样的概念是解决此类问题的关键,属基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,【解题分析】(1)利用抛物线的焦半径公式求得点的横坐标,进而求得p,可得答案;(2)根据题意可设直线方程,和抛物线方程联立,得到根与系数的关系式,利用直线与的斜率互为倒数列出等式,化简可得结论.【小问1详解】(1)则,,,,故C的方程为:;【小问2详解】假设存在定点,使得直线与的斜率互为倒数,由题意可知,直线AB的斜率存在,且不为零,,,,,所以Δ>0y1+即或,,,则,,使得直线与的斜率互为倒数.18、(1);(2)最大值为2,【解题分析】(1)根据题意,将圆的方程变形为标准方程,由点与圆的位置关系可得,求解不等式组得答案;(2)当时,圆的方程为,求出圆心与半径,设,则,分析可得面积的最大值,结合直线与圆的位置关系可得圆心到直线的距离,设直线的方程为,即,由点到直线的距离公式列式求得的值【题目详解】解:(1)根据题意,圆,即,若在圆外,则有,解得:,即的取值范围为;(2)当时,圆的方程为,圆心为,半径,设,则,当时,面积取得最大值,且其最大值为2,此时为等腰直角三角形,圆心到直线的距离,设直线的方程为,即,则有,解得,即直线的斜率【题目点拨】易错点点睛:本题第一问解答过程中,容易忽视二元二次方程表示圆的条件,导致出错,解题的时候要考虑周全,考查运算求解能力,是中档题.19、(1)当时,在定义域上单调递增;当时,在上单调递增,在上单调递减;(2).【解题分析】(1)求出的导数,通过讨论的范围,求出函数的单调区间即得解;(2)问题转化为,,,令,求出的最大值,从而求出的范围即得解【题目详解】解:(1)函数的定义域为,,①当时,,,,在定义域上单调递增②当时,若,则,在上单调递增;若,则,在上单调递减综上所述,当时,在定义域上单调递增;当时,在上单调递增,在上单调递减(2)当时,,不等式在,上恒成立,,,,令,,,,在,上单调递增,(1),,的范围为,20、(1)(2)或【解题分析】(1)根据题意可得,又因为且,解得,可得双曲线方程,进而可得的渐近线方程(2)设直线的方程为:,,,联立直线与双曲线方程,可得关于的一元二次方程,由韦达定理可得,,再由两点之间距离公式得,解得,进而由可求出,即可求得离心率.【小问1详解】∵点是双曲线的一个焦点,∴,又∵且,解得,∴双曲线方程为,∴的渐近线方程为:;小问2详解】设直线的方程为,且,,联立,可得,则,∴,即,∴,解得或,即由可得或,故双曲线的离心率或.21、(1);(2).【解题分析】(1)若,分别求出,成立的等价条件,利用为真,求实数的取值范围;(2)利用是的充分不必要条件,建立不等式关系即可求实数的取值范围【题目详解】:等价于:即;:代数式有意义等价于:,即,(1)时,即为,若“”为真命题,则,得:故时,使“”为真命题的实数的取值范围是,,(2)记集合,,若是成立的充分不必要条件,则是的真子集,因此:,,故实数的取值范围是22、(1);(2).【解题分析】(1)由题意列关于,,的方程,联立方程组求得,,,则椭圆方程可求;(2)分直线轴与直线l不垂直于x轴两种情况讨论,当直线l不垂直于x轴时,设,,直线l:(,),联立直线方程与椭圆方程,消元由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育技术与应用创新题库
- 2025商业地产租赁合同(办公)
- 2025年大连房屋租赁合同样本下载
- 软件测试流程与技巧指南
- 2025年版标准合同范本模板
- 中国蚕丝绸文化知到课后答案智慧树章节测试答案2025年春浙江大学
- 2025办公室租赁合同范文
- 科技行业人工智能应用研究与产品开发方案
- 通讯设备行业5G通讯设备研发与生产方案
- 农业科技研发推广方案
- 农业机械学育苗移栽机械
- 澳大利亚PSC检查经过
- 01-14江苏大学车辆工程考研复试真题答案
- TMYZX 001-2021 酿酒专用小麦原粮
- 2023年湖北国土资源职业学院高职单招(数学)试题库含答案解析
- GB/T 37910.1-2019焊缝无损检测射线检测验收等级第1部分:钢、镍、钛及其合金
- 雷锋叔叔你在哪里教学反思
- (新版)国家统计执法证资格考试备考题库(含答案)
- 项目验收单标准模板
- 小学 三年级 心理健康《最好的老师-兴趣的作用》教学设计
- DB12T 1040-2021 建筑工程规划管理技术规范
评论
0/150
提交评论