四川省泸州市合江县中学2021年高一数学文期末试题含解析_第1页
四川省泸州市合江县中学2021年高一数学文期末试题含解析_第2页
四川省泸州市合江县中学2021年高一数学文期末试题含解析_第3页
四川省泸州市合江县中学2021年高一数学文期末试题含解析_第4页
四川省泸州市合江县中学2021年高一数学文期末试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省泸州市合江县中学2021年高一数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知向量=(2sinx,sinx),=(sinx,2cosx),函数f(x)=2?,若不等式f(x)≤m在[0,]上有解,则实数m的最小值为()A.0 B.﹣1 C.2 D.﹣2参考答案:A【考点】平面向量数量积的运算.【分析】利用两个向量的数量积的定义,三角恒等变换化简函数f(x)的解析式,再利用正弦函数的定义域和值域,求得f(x)的范围,可得m的最小值.【解答】解:∵函数f(x)=2?=4sin2x+4sinxcosx=2﹣2cos2x+2sin2x=4sin(2x﹣)+2,在[0,]上,2x﹣∈[﹣,],∴4sin(2x﹣)∈[﹣2,4],∴f(x)∈[0,6].若不等式f(x)≤m在[0,]上有解,则m≥0,故选:A.【点评】本题主要考查两个向量的数量积的定义,三角恒等变换,正弦函数的定义域和值域,函数的能成立问题,属于中档题.2.函数的最小正周期为

(

)A

B

C

D参考答案:B3.在△ABC中,若,则△ABC的形状是(

)A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等腰或直角三角形参考答案:B分析:先根据三角形内角关系以及诱导公式、两角和与差正弦公式化简得角的关系,即得三角形形状.详解:因为,所以因为,所以因此的形状是等腰三角形.选B.点睛:判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用这个结论.4.的内角的对边分别为,已知,,,则的面积为(

)(A)

(B)

(C)

(D)参考答案:B∵,,,∴由正弦定理得,解得,又,==.5.下列函数中,既不是奇函数,也不是偶函数的是()A.

B.

C.

D.参考答案:B6.数列中,,,则(

(A)

(B)

(C)1

(D)2参考答案:A略7.已知三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,且PA=2,PB=,PC=3,则这个三棱锥的外接球的表面积为()A.16π B.32π C.36π D.64π参考答案:A【考点】球的体积和表面积.【分析】三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长,就是球的直径,然后求球的表面积.【解答】解:三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长:=4所以球的直径是4,半径为2,球的表面积:4π×4=16π.故选A.8.设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为,则a=(

)A. B.2 C. D.4参考答案:D【考点】对数函数的单调性与特殊点.【分析】因为a>1,函数f(x)=logax是单调递增函数,最大值与最小值之分别为loga2a、logaa=1,所以loga2a﹣logaa=,即可得答案.【解答】解.∵a>1,∴函数f(x)=logax在区间[a,2a]上的最大值与最小值之分别为loga2a,logaa,∴loga2a﹣logaa=,∴,a=4,故选D【点评】本题主要考查对数函数的单调性与最值问题.对数函数当底数大于1时单调递增,当底数大于0小于1时单调递减.9.方程-x2-5x+6=0的解集为(

).A.{-6,1} B.{2,3} C.{-1,6} D.{-2,-3}参考答案:A【分析】因式分解法求解一元二次方程.【详解】∵-x2-5x+6=0,∴x2+5x-6=0,∴(x+6)(x-1)=0,∴x=-6或1,方程-x2-5x+6=0的解集为{-6,1}.故选:A.【点睛】本题属于简单题,解一元二次方程时注意观察方程特征,本题采用因式分解法会快速精准解题.10.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5参考答案:B【考点】正弦函数的对称性.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B二、填空题:本大题共7小题,每小题4分,共28分11.参考答案:.12.已知为等比数列,是它的前项和.若,且与的等差中项为,则

.参考答案:3113.已知数列{an}满足,,,记数列{an}的前n项和为Sn,则________.参考答案:7500【分析】讨论的奇偶性,分别化简递推公式,根据等差数列的定义得的通项公式,进而可求.【详解】当是奇数时,=﹣1,由,得,所以,,,…,…是以为首项,以2为公差的等差数列,当为偶数时,=1,由,得,所以,,,…,…是首项为,以4为公差的等差数列,则,所以.故答案为:7500【点睛】本题考查数列递推公式的化简,等差数列的通项公式,以及等差数列前n项和公式的应用,也考查了分类讨论思想,属于中档题.14.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知,则B=

.参考答案:;由已知及正弦定理可得,由于,可解得或因为b<a,利用三角形中大边对大角可知B<A,所以,,综上,,

15.已知x+y=3﹣cos4θ,x﹣y=4sin2θ,则+=

.参考答案:2【考点】HW:三角函数的最值.【分析】根据题意解方程组得x、y的值,再根据三角函数的恒等变换化简求值即可.【解答】解:x+y=3﹣cos4θ,x﹣y=4sin2θ,∴x===sin22θ+2sin2θ+1=(1+sin2θ)2;y==sin22θ﹣2sin2θ+1=(1﹣sin2θ)2;∴+=|1+sin2θ|+|1﹣sin2θ|=(1+sin2θ)+(1﹣sin2θ)=2.故答案为:2.16.已知集合,,且,则实数的值为

;参考答案:17.函数的定义域是

参考答案:(5,6]三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分13分)已知函数的图象关于直线对称,当,且时,试求的值.参考答案:解析:由cosx-sinx=,可得cos(x+)=,且sin2x=∴=7又∵是关于x=3对称的函数,∴=f(7)=f(-1)=32019.已知圆:与直线:,动直线过定点.(1)若直线l与圆C相切,求直线l的方程;(2)若直线l与圆C相交于P、Q两点,点M是PQ的中点,直线l与直线m相交于点N.探索是否为定值,若是,求出该定值;若不是,请说明理由.参考答案:(1)直线的方程为或(2)?为定值,详见解析【分析】(1)假设直线方程,再根据直线与圆相切,则圆心到直线的距离等于半径求解;(2)根据向量加法三角形法和数量积公式把化为,联立两直线方程求出点的坐标,把向量积用坐标表示,化简即可的得到结果.【详解】解:(1)当直线的斜率不存在时,直线的方程为,此时与圆相切,符合题意;当直线的斜率存在时,设直线的方程为,即,若直线与圆相切,则圆心到直线的距离等于半径1,所以,解得,所以直线的方程为,即.综上,直线的方程为或.直线的方程为或.(2)∵⊥,∴若直线与轴垂直时,不符合题意;所以的斜率存在,设直线的方程为,则由,即.∴,从而.综上所述,.【点睛】本题考查直线与圆的位置关系及应用,向量积的坐标计算;此题的关键在于结合图形把化为.20.已知A、B、C为△ABC的三内角,且其对边分别为a、b、c.且(1)求A的值;(2)若,三角形面积,求的值.参考答案:(1);(2)【分析】(1)利用正弦定理化简,并用三角形内角和定理以及两角和的正弦公式化简,求得,由此求得的大小.(2)利用三角形的面积公式求得,利用余弦定理列方程,化简求得的值.【详解】解:(1),得:∵∴,即∵,∴,∵,∴(2)由(1)有,又由余弦定理得:又,,所以【点睛】本小题主要考查三角形的面积公式,考查正弦定理、余弦定理解三角形,考查运算求解能力,属于中档题.21.如图所示,三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.求证:(1)DM∥平面APC;(2)平面ABC⊥平面APC.参考答案:证明:(1)∵M为AB的中点,D为PB的中点,∴DM∥AP.又∵DM?平面APC,AP平面APC,∴DM∥平面APC.(2)∵△PMB为正三角形,D为PB的中点,∴DM⊥PB.又∵DM∥AP,∴AP⊥PB.又∵AP⊥PC,PC∩PB=P,∴AP⊥平面PBC.∵BC平面PBC,∴AP⊥BC.又∵AC⊥BC,且AC∩AP=A,∴BC⊥平面APC.又∵BC平面ABC,∴平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论