




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年甘肃省通渭县第二中学高二上数学期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的离心率,点是抛物线上的一动点,到双曲线的上焦点的距离与到直线的距离之和的最小值为,则该双曲线的方程为A. B.C. D.2.如图,在直三棱柱中,AB=BC,,若棱上存在唯一的一点P满足,则()A. B.1C. D.23.在长方体中,若,,则异而直线与所成角的余弦值为()A. B.C. D.4.函数,的值域为()A. B.C. D.5.记Sn为等差数列{an}的前n项和,给出下列4个条件:①a1=1;②a4=4;③S3=9;④S5=25,若只有一个条件不成立,则该条件为()A.① B.②C.③ D.④6.曲线上的点到直线的距离的最小值是()A.3 B.C.2 D.7.瑞士数学家欧拉1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是()A. B.C. D.8.若一个正方体的全面积是72,则它的对角线长为()A. B.12C. D.69.对于两个平面、,“内有三个点到的距离相等”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.与向量平行,且经过点的直线方程为()A. B.C. D.11.已知随机变量服从正态分布,,则()A. B.C. D.12.若函数在上有且仅有一个极值点,则实数的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的渐近线方程为,,分别为C的左,右焦点,若动点P在C的右支上,则的最小值是______14.已知等比数列中,则q=___15.已知正数满足,则的最小值是__________.16.定义方程的实数根叫做函数的“新驻点”.(1)设,则在上的“新驻点”为___________;(2)如果函数与的“新驻点”分别为、,那么和的大小关系是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知p:方程所表示的曲线为焦点在x轴上的椭圆;q:当时,函数恒成立.(1)若p为真,求实数t的取值范围;(2)若为假命题,且为真命题,求实数t的取值范围18.(12分)已知数列的前n项和,满足,.(1)求证:数列是等差数列;(2)令,求数列的前n项和.19.(12分)求适合下列条件的圆锥曲线的标准方程(1)中心在原点,实轴在轴上,一个焦点在直线上的等轴双曲线;(2)椭圆的中心在原点,焦点在轴上,离心率等于,且它的一个顶点恰好是抛物线的焦点;(3)经过点抛物线20.(12分)如图,在正方体中,为的中点,点在棱上(1)若,证明:与平面不垂直;(2)若平面,求平面与平面的夹角的余弦值21.(12分)已知椭圆,离心率分别为左右焦点,椭圆上一点满足,且的面积为1.(1)求椭圆的标准方程;(2)过点作斜率为的直线交椭圆于两点.过点且平行于的直线交椭圆于点,证明:为定值.22.(10分)如图所示,在四棱锥中,BC//平面PAD,,E是PD的中点(1)求证:CE//平面PAB;(2)若M是线段CE上一动点,则线段AD上是否存在点,使MN//平面PAB?说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】先根据离心率得,再根据抛物线定义得最小值为(为抛物线焦点),解得,即得结果.【题目详解】因为双曲线的离心率,所以,设为抛物线焦点,则,抛物线准线方程为,因此到双曲线的上焦点的距离与到直线的距离之和等于,因为,所以,即,即双曲线的方程为,选B.【题目点拨】本题考查双曲线方程、离心率以及抛物线定义,考查基本分析求解能力,属中档题.2、D【解题分析】设,构建空间直角坐标系,令且,求出,,再由向量垂直的坐标表示列方程,结合点P的唯一性有求参数a,即可得结果.【题目详解】由题设,构建如下图空间直角坐标系,若,则,,且,所以,,又存在唯一的一点P满足,所以,则,故,可得,此时,所以.故选:D3、C【解题分析】通过平移把异面直线平移到同一平面中,所以取,的中点,易知且过中心点,所以异而直线与所成角为和所成角,通过解三角形即可得解.【题目详解】根据长方体的对称性可得体对角线过中心点,取,的中点,易知且过中心点,所以异而直线和所成角为和所成角,连接,在中,,,,所以则异而直线与所成角的余弦值为:,故选:C.4、D【解题分析】求出函数的导数,根据导数在函数最值上的应用,即可求出结果.【题目详解】因为,所以,令,又,所以或;所以当时,;当时,;所以在单调递增,在上单调递减;所以;又,,所以;所以函数的值域为.故选:D.5、B【解题分析】根据等差数列通项公式及求和公式的基本量计算,对比即可得出结果.【题目详解】设等差数列{an}的公差为,,,,即,即.当,时,①③④均成立,②不成立.故选:B6、D【解题分析】求出函数的导函数,设切点为,依题意即过切点的切线恰好与直线平行,此时切点到直线的距离最小,求出切点坐标,再利用点到直线的距离公式计算可得;【题目详解】解:因为,所以,设切点为,则,解得,所以切点为,点到直线的距离,所以曲线上的点到直线的距离的最小值是;故选:D7、C【解题分析】设出点C坐标,求出的重心并代入欧拉线方程,验证并排除部分选项,余下选项再由外心、垂心验证判断作答.【题目详解】设顶点的坐标为,则的重心坐标为,依题意,,整理得:,对于A,当时,,不满足题意,排除A;对于D,当时,,不满足题意,排除D;对于B,当时,,对于C,当时,,直线AB的斜率,线段AB中点,线段AB中垂线方程:,即,由解得:,于是得的外心,若点,则直线BC的斜率,线段BC中点,该点与点M确定直线斜率为,显然,即点M不在线段BC的中垂线上,不满足题意,排除B;若点,则直线BC的斜率,线段BC中点,线段BC中垂线方程为:,即,由解得,即点为的外心,并且在直线上,边AB上的高所在直线:,即,边BC上的高所在直线:,即,由解得:,则的垂心,此时有,即的垂心在直线上,选项C满足题意.故选:C【题目点拨】结论点睛:的三顶点,则的重心为.8、D【解题分析】根据全面积得到正方体的棱长,再由勾股定理计算对角线.【题目详解】设正方体的棱长为,对角线长为,则有,解得,从而,解得.故选:D9、B【解题分析】根据平面的性质分别判断充分性和必要性.【题目详解】充分性:若内有三个点到的距离相等,当这三个点不在一条直线上时,可得;当这三个点在一条直线上时,则、平行或相交,故充分性不成立;必要性:若,则内每个点到的距离相等,故必要性成立,所以“内有三个点到的距离相等”是“”的必要不充分条件.故选:B.10、A【解题分析】利用点斜式求得直线方程.【题目详解】依题意可知,所求直线的斜率为,所以所求直线方程为,即.故选:A11、B【解题分析】直接利用正态分布的应用和密度曲线的对称性的应用求出结果【题目详解】根据随机变量服从正态分布,所以密度曲线关于直线对称,由于,所以,所以,则,所以故选:B.【题目点拨】本题考查的知识要点:正态分布的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题12、C【解题分析】根据极值点的意义,可知函数的导函数在上有且仅有一个零点.结合零点存在定理,即可求得的取值范围.【题目详解】函数则因为函数在上有且仅有一个极值点即在上有且仅有一个零点根据函数零点存在定理可知满足即可代入可得解得故选:C【题目点拨】本题考查了函数极值点的意义,函数零点存在定理的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】首先根据双曲线的渐近线方程和焦点坐标,求出双曲线的标准方程;设,根据双曲线的定义可知,从而利用基本不等式即可求出的最小值.【题目详解】因为双曲线的渐近线方程为,焦点坐标为,,所以,即,所以双曲线方程为.设,则,且,,当且仅当,即时等号成立,所以的最小值是.故答案为:.14、3【解题分析】根据等比数列的性质求得,再根据等比数列的通项公式求得答案.【题目详解】等比数列中,故,,所以,故答案为:315、8【解题分析】利用“1”代换,结合基本不等式求解.【题目详解】因为,,所以,当且仅当,即时等号成立,所以当时,取得最小值8.故答案为:8.16、①.②.【解题分析】(1)根据“新驻点”的定义求得,结合可得出结果;(2)求出的值,利用零点存在定理判断所在的区间,进而可得出与的大小关系.详解】(1),,根据“新驻点”的定义得,即,可得,,解得,所以,函数在上的“新驻点”为;(2),则,根据“新驻点”的定义得,即.,则,由“新驻点”的定义得,即,构造函数,则函数在定义域上为增函数,,,,由零点存在定理可知,,.故答案为:(1);(2).【题目点拨】本题考查导数的计算,是新定义的题型,关键是理解“新驻点”的定义.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)由给定条件结合椭圆标准方程的特征列不等式求解作答.(2)求命题q真时的t值范围,再借助“或”联结的命题为真命题求解作答.【小问1详解】因方程所表示的曲线为焦点在x轴上的椭圆,则有,解得,所以实数t的取值范围是.【小问2详解】,则有,当且仅当,即时取“=”,即,因当时,函数恒成立,则,解得,命题q为真命题有,因为假命题,且为真命题,则与一真一假,当p真q假时,,当p假q真时,,所以实数t的取值范围是.18、(1)证明见解析(2)【解题分析】(1)先将变为,然后等式两边同除即可得答案;(2)求出,再用错位相减求和【小问1详解】证明:∵∴由已知易得,∴∴数列是首项,公差为的等差数列;【小问2详解】由(1)可知,∴∴①②①-②有∴19、(1)(2)(3)或【解题分析】(1)由已知求得,再由等轴双曲线的性质可求得则,由此可求得双曲线的方程;(2)由已知求得抛物线的焦点为,得出椭圆的,再根据椭圆的离心率求得,由此可得出椭圆的方程;(3)设抛物线的标准方程为:或,代入点求解即可.【小问1详解】解:对于直线,令,得,所以,则,所以,所以中心在原点,实轴在轴上,一个焦点在直线上的等轴双曲线的方程为;【小问2详解】解:由得抛物线的焦点为,所以对于椭圆,,又椭圆的离心率为,所以,解得,所以椭圆的方程;【小问3详解】解:因为点在第三象限,所以满足条件的抛物线的标准方程可以是:或,代入点得或,解得或,所以经过点的抛物线的方程为或20、(1)证明见解析(2)【解题分析】(1)设正方体的棱长为,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,计算出,即可证得结论成立;(2)利用空间向量法可求得平面与平面的夹角的余弦值.【小问1详解】证明:以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,设正方体的棱长为,则、、、,由得点的坐标为,,,因为,所以与不垂直,所以与平面不垂直【小问2详解】解:设,则,,因为平面,所以,所以,得,且,即,所以,,设平面的法向量为,由,取,可得,因为平面,所以平面的一个法向量为,所以,所以平面与平面所成夹角的余弦值为21、(1)(2)证明见解析【解题分析】(1)方法一:根据离心率以及,可得出,将条件转化为点在以为直径的圆上,即为圆与椭圆的交点,将的面积用表示,求出,进而求出椭圆的标准方程;方法二:根据椭圆的定义,,再根据勾股定理和直角三角形的面积公式,即可解得,又由离心率求出,则可求出椭圆的标准方程;(2)设出直线的方程,代入椭圆方程,根据韦达定理表示出,再将直线的方程代入椭圆方程,求出,则为定值.【小问1详解】方法一:由离心率,得:,所以椭圆上一点,满足,所以点为圆:与椭圆的交点,联立方程组解得所以,解得:,所以椭圆的标准方程为:.方法二:由椭圆定义;,因为,所以,得到:,即,又,得所以椭圆C的标准方程为:;【小问2详解】设直线AB的方程为:.得设过点且平行于的直线方程:.22、(1)证明见解析;(2)存在,理由见解析.【解题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届湖北黄冈高考考前模拟化学试题含解析
- 2025年面板检测系统项目合作计划书
- 2025届湖北省黄冈市新联考高三第一次调研测试化学试卷含解析
- 五四红旗团支部
- 2025年空心桨叶干燥机项目建议书
- 急救护理学蛇咬伤
- 陕西铁路工程职业技术学院《品牌与互动营销》2023-2024学年第二学期期末试卷
- 隆昌县2025届五年级数学第二学期期末统考试题含答案
- 雅安职业技术学院《基本体操与健美操》2023-2024学年第一学期期末试卷
- 集美大学《弹性力学基础与有限元》2023-2024学年第一学期期末试卷
- 浙江省温州市2024届高三下学期三模数学试题 含解析
- 2025年皖西卫生职业学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 《中国传统绘画艺术》课件
- 2025医保政策培训
- 中医药在口腔科疾病治疗中的应用
- 2024年正德职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 学生心理韧性对教学策略的影响研究
- 2025年度智慧医疗his系统采购合同模板3篇
- 企业对外宣传培训体系
- 巨量云图(中级)认证考试题库(附答案)
- 《可拆装低层装配式钢结构建筑技术标准》
评论
0/150
提交评论