2022-2023学年山东省莱芜市是第五中学高一数学理月考试题含解析_第1页
2022-2023学年山东省莱芜市是第五中学高一数学理月考试题含解析_第2页
2022-2023学年山东省莱芜市是第五中学高一数学理月考试题含解析_第3页
2022-2023学年山东省莱芜市是第五中学高一数学理月考试题含解析_第4页
2022-2023学年山东省莱芜市是第五中学高一数学理月考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

付费下载

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年山东省莱芜市是第五中学高一数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的大致图象是()A.

B.C.

D.参考答案:A考点:函数的图象及性质.2.△ABC的内角A,B,C的对边分别为a,b,c,设.(1)求A;(2)若,求C.参考答案:(1)(2)【分析】(1)由正弦定理得,再利用余弦定理的到.(2)将代入等式,化简得到答案.【详解】解:(1)由结合正弦定理得;∴又,∴.(2)由,∴∴,∴∴又∴解得:,.【点睛】本题考查了正弦定理,余弦定理,和差公式,意在考查学生的计算能力.3.函数f(x)=a2x﹣1(a>0且a≠1)过定点()A.(1,1) B.(,0) C.(1,0) D.(,1)参考答案:D【考点】指数函数的图象与性质.【分析】由2x﹣1=0得x=,利用a0=1求出函数f(x)=a2x﹣1过的定点坐标.【解答】解:由2x﹣1=0得x=,则f()=a0=1,∴函数f(x)=a2x﹣1(a>0且a≠1)过定点(,1),故选:D.4.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m?α,n?β,则m⊥n B.若α∥β,m?α,n?β,则m∥nC.若m⊥n,m?α,n?β,则α⊥β D.若m⊥α,m∥n,n∥β,则α⊥β参考答案:D【考点】空间中直线与平面之间的位置关系;命题的真假判断与应用;平面与平面之间的位置关系.【分析】由α⊥β,m?α,n?β,可推得m⊥n,m∥n,或m,n异面;由α∥β,m?α,n?β,可得m∥n,或m,n异面;由m⊥n,m?α,n?β,可得α与β可能相交或平行;由m⊥α,m∥n,则n⊥α,再由n∥β可得α⊥β.【解答】解:选项A,若α⊥β,m?α,n?β,则可能m⊥n,m∥n,或m,n异面,故A错误;选项B,若α∥β,m?α,n?β,则m∥n,或m,n异面,故B错误;选项C,若m⊥n,m?α,n?β,则α与β可能相交,也可能平行,故C错误;选项D,若m⊥α,m∥n,则n⊥α,再由n∥β可得α⊥β,故D正确.故选D.5.函数f(x)=loga(x﹣1)(a>0,a≠1)的反函数的图象过定点()A.(0,2) B.(2,0) C.(0,3) D.(3,0)参考答案:A【考点】反函数.【分析】先求函数过的定点,再求关于y=x的对称点,对称点就是反函数过的定点.【解答】解:函数f(x)=loga(x﹣1)恒过(2,0),函数和它的反函数关于y=x对称,那么(2,0)关于y=x的对称点是(0,2),即(0,2)为反函数图象上的定点.故选A.6.各项不为零的等差数列中,,数列是等比数列,且,则(

)A、2

B、4

C、8 D、16参考答案:D7.已知定义在上的奇函数满足,则的值是:A.2

B.1

C.

0

D.参考答案:C8.设=(4,3),在上的投影为4,在x轴上的投影为2,则为()A.(2,14) B. C.(2,4) D.参考答案:C【考点】9R:平面向量数量积的运算.【分析】设=(x,y),代入投影公式列方程组解出.【解答】解:||=5,∴在上的投影为||?==4,∴=20,设x轴的方向向量为=(1,0),则在x轴上的投影||?==2,设=(x,y),则,解得.故选C.【点评】本题考查了平面向量的数量积运算,属于中档题.9.函数的图象是……………

()

参考答案:A略10.已知平面上四点A,B,C满足,则△ABC的形状是(

)A.等腰三角形

B.等边三角形C.直角三角形

D.等腰直角三角形参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.过点A(2,1)且与原点距离为2的直线方程

.参考答案:x=2或3x+4y-10=012.已知点M在的内部,,,,,,则CM的长是___________。

参考答案:略13.(4分)已知函数f(x)是R上的奇函数,g(x)是R上的偶函数,且g(x)=f(+x),则fg(+x)=

.参考答案:﹣f2(x)考点: 函数奇偶性的性质.专题: 函数的性质及应用.分析: 判断出f(+x)=f(﹣x),即f(x)=f(π﹣x),f(x+π)=f(﹣x)=﹣f(x),可判断:f(x+2π)=f(x)得出周期为2π,把f+g(+x)=f(x)f(π+x)=f(x)=﹣f(x)f(x)求解即可.解答: 解:∵函数f(x)是R上的奇函数,g(x)是R上的偶函数,∴f(﹣x)=﹣f(x),f(0)=0,g(﹣x)=g(x),∵g(x)=f(+x),∴f(+x)=f(﹣x),即f(x)=f(π﹣x),f(x+π)=f(﹣x)=﹣f(x)f(x+2π)=﹣f(x+π)=f(x)∴f(x)的周期为2π.∴fg(+x)=f(x)f(π+x)=f(x)=﹣f(x)f(x)=﹣f2(x)点评: 本题综合考查了函数的性质,性质与代数式的联系,属于中档题.14.已知,那么将用表示的结果是______________.参考答案:略15.计算

.参考答案:

16.化简:=

.参考答案:略17.现用一半径为10cm,面积为80πcm2的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________cm3.参考答案:128π分析:由圆锥的几何特征,现用一半径为10cm,面积为的扇形铁皮制作一个无盖的圆锥形容器,则圆锥的底面周长等于扇形的弧长,圆锥的母线长等于扇形的半径,由此计算出圆锥的高,代入圆锥体积公式,即可求出答案.解析:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器的高和底面半径分别为h、r,则由题意得R=10,由,得,由得.由可得.该容器的容积为.故答案为:.点睛:涉及弧长和扇形面积的计算时,可用的公式有角度表示和弧度表示两种,其中弧度表示的公式结构简单,易记好用,在使用前,应将圆心角用弧度表示.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)判断并证明函数在(0,2]内的单调性,并求其值域。参考答案:解:函数在(0,2]内是减函数。……………2分证明:任取,不妨设因此,函数在(0,2]内是减函数。由函数的单调性可得:

………………….2分

19.(本小题10分)已知(1)求的值;(2)求的值.

参考答案:解:(1)因为,所以cosa=(2)原式=略20.(本小题满分16分)图1是某斜拉式大桥图片,为了了解桥的一些结构情况,学校数学兴趣小组将大桥的结构进行了简化,取其部分可抽象成图2所示的模型,其中桥塔、与桥面垂直,通过测量得知,,当为中点时,.(1)求的长;(2)试问在线段的何处时,达到最大.图1图2参考答案:(1)设,,,则,,由题意得,,解得.

(2)设,则,,,

,,即为锐角,令,则,,,

当且仅当即,时,最大.

21.已知为平面向量,=(4,3),2+=(3,18).(1)求的值;(2)若,求实数k的值.参考答案:【考点】9R:平面向量数量积的运算;9T:数量积判断两个平面向量的垂直关系.【分析】(1)设,由2+=(3,18)求得x、y的值,可得的坐标,从而求得的值.(2)先求得的坐标,再根据,,求得k的值.【解答】解:(1)设,∴,∴,∴,∴,∴=(﹣5)×4+3×12=16.(2)由于,,∴,∴.【点评】本题主要考查两个向量的数量积公式的应用,两个向量垂直的性质,两个向量坐标形式的运算,属于中档题.22.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(1)求PB和平面PAD所成的角的大小.(2)求二面角A﹣PD﹣C的正弦值.参考答案:【考点】二面角的平面角及求法;直线与平面所成的角.【分析】(1)推导出PA⊥AB.又AB⊥AD,从而AB⊥平面PAD.进而∠APB为PB和平面PAD所成的角,由此能示出PB和平面PAD所成的角的大小.(2)推导出PA⊥CD,从而CD⊥平面PAC,进而AE⊥平面PCD.过点E作EM⊥PD,垂足为M,连接AM,则∠AME是二面角A﹣PD﹣C的平面角.由此能求出二面角A﹣PD﹣C的正弦值.【解答】(本小题10分)解:(1)在四棱锥P﹣ABCD中,∵PA⊥平面ABCD,AB?平面ABCD,∴PA⊥AB.又AB⊥AD,PA∩AD=A,∴AB⊥平面PAD.故PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)在四棱锥P﹣ABCD中,∵PA⊥平面ABCD,CD?平面ABCD,∴PA⊥CD.由条件AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.又∵AE?平面PAC,∴CD⊥AE.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴PC⊥AE.又∵CD⊥PC=C,∴AE⊥平面PCD.过点E作EM⊥P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论