版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年上海汇南高级中学高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在中,角,,所对边分别是,,,若,,且,满足题意的有(
)A.0个 B.一个 C.2个 D.不能确定参考答案:B,,,为锐角,且,b,满足题意的有一个,选B.
2.球面上四点P、A、B、C,,已知PA、PB、PC两两垂直,且PA=PB=PC=,则球的表面积为()A.
B.
C.
D.参考答案:D3.等差数列的前项和,已知
(
)
A.1
B.
C.2
D.参考答案:A4.若直线y=k(x+4)与曲线x=有交点,则k的取值范围是()A.[﹣,] B.(﹣∞,﹣)∪(,+∞) C.[﹣,] D.(﹣∞,﹣]∪[,+∞)参考答案:A考点:直线与圆的位置关系.专题:计算题;数形结合;直线与圆.分析:求得直线恒过定点(﹣4,0),曲线x=即为右半圆x2+y2=4,作出直线和曲线,通过图象观察,即可得到直线和半圆有交点时,k的范围.解答:解:直线y=k(x+4)恒过定点(﹣4,0),曲线x=即为右半圆x2+y2=4,当直线过点(0,﹣2)可得﹣2=4k,解得k=﹣,当直线过点(0,2)可得2=4k,解得k=.由图象可得当﹣≤k≤时,直线和曲线有交点.故选A.点评:本题考查直线和圆的位置关系,考查数形结合的思想方法,考查运算能力,属于中档题.5.若点P为共焦点的椭圆和双曲线的一个交点,、分别是它们的左右焦点.设椭圆离心率为,双曲线离心率为,若,则
(
)A.1
B.2
C.3
D.4
参考答案:D略6.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y= B.y=e﹣x C.y=﹣x2+1 D.y=lg|x|参考答案:C考点: 函数奇偶性的判断;函数单调性的判断与证明.
专题: 计算题;函数的性质及应用.分析: 根据偶函数的定义,可得C,D是偶函数,其中C在区间(0,+∞)上单调递减,D在区间(0,+∞)上单调递增,可得结论.解答: 解:根据偶函数的定义,可得C,D是偶函数,其中C在区间(0,+∞)上单调递减,D在区间(0,+∞)上单调递增,故选:C.点评: 本题考查奇偶性与单调性的综合,考查学生分析解决问题的能力,比较基础7.把化成二进制为
(
)A. B. C. D.参考答案:A8.过抛物线y=x2上的点M()的切线的倾斜角()A.30° B.45° C.60° D.135°参考答案:B【考点】利用导数研究曲线上某点切线方程.【分析】求得函数的导数,求得切线的斜率,由直线的斜率公式,可得倾斜角.【解答】解:y=x2的导数为y′=2x,在点的切线的斜率为k=2×=1,设所求切线的倾斜角为α(0°≤α<180°),由k=tanα=1,解得α=45°.故选:B.9.已知随机变量X的分布列为X-101P0.50.2p则A0 B.-0.2 C.-0.1 D.-0.3参考答案:B【分析】由随机变量X的分布列求出,求出.【详解】由随机变量X的分布列知:,则,所以.故选:B.【点睛】本题考查离散型随机变量的期望的求法,是基础题.10.若函数的图象在处的切线与圆相交,则点与圆的位置关系是(
)(A)圆内
(B)圆外
(C)圆上
(D)圆内或圆外参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.直线l:x-2y-3=0与圆C:(x-2)2+(y+3)2=9交于E,F两点,则△EOF(O是坐标原点)的面积为________.参考答案:12.江苏省高中生进入高二年级时需从“物理、化学、生物、历史、地理、政治、艺术”科目中选修若干进行分科,分科规定如下:从物理和历史中选择一门学科后再从化学、生物、地理、政治中选择两门学科作为一种组合,或者只选择艺术这门学科,则共有_________种不同的选课组合.(用数字作答)参考答案:13【分析】先从物理和历史中选择一门学科,再从化学、生物、地理、政治中选择两门学科作为一种组合,再根据题意求解.【详解】先从从物理和历史中选择一门学科有种,再从化学、生物、地理、政治中选择两门学科作为一种组合有种,所以共有种.故答案为:13【点睛】本题主要考查排列组合的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.13.已知圆,圆心为,点,为圆上任意一点,的垂直平分线交于点,则点的轨迹方程为____________.参考答案:略14.复数的模为__________.参考答案:【考点】A8:复数求模.【分析】利用复数代数形式的乘法运算化简,再由复数模的计算公式求解.【解答】解:∵,∴复数的模为.故答案为:.15.设是定义在R上的奇函数,为其导函数,且.当时,有恒成立,则不等式的解集是
.参考答案:16.设α,β为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:①若m∥n,n?α,则m∥α②若m?α,n?α,m∥β,n∥β,则α∥β③若α∥β,m?α,n?β,则m∥n④若α⊥β,α∩β=m,n?α,n⊥m,则n⊥β;其中正确命题的序号为.参考答案:④考点:平面与平面之间的位置关系.专题:综合题.分析:根据线面平行的判定定理,面面平行的判定定理,面面平行的性质定理,及面面垂直的性质定理,对题目中的四个结论逐一进行分析,即可得到答案.解答:解:当m∥n,n?α,则m?α也可能成立,故①错误;当m?α,n?α,m∥β,n∥β,m与n相交时,α∥β,但m与n平行时,α与β不一定平行,故②错误;若α∥β,m?α,n?β,则m与n可能平行也可能异面,故③错误;若α⊥β,α∩β=m,n?α,n⊥m,由面面平行的性质,易得n⊥β,故④正确故答案为:④点评:本题考查的知识点是平面与平面之间的位置关系,直线与平面之间的位置关系,熟练掌握空间线与线,线与面,面与面之间的关系的判定方法及性质定理,是解答本题的关键.17.已知函数是奇函数,则的值等于
.
参考答案:-1三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.
2000年我国人口为13亿,如果人口每年的自然增长率为7‰,那么多少年后我国人口将达到15亿?设计一个算法的程序.参考答案:A=13R=0.007i=1DO
A=A*(1+R)
i=i+1
LOOP
UNTIL
A>=15
i=i-1PRINT
“达到或超过15亿人口需要的年数为:”;iEND
19.在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的焦距为2.(1)若椭圆C经过点(,1),求椭圆C的标准方程;(2)设A(﹣2,0),F为椭圆C的左焦点,若椭圆C上存在点P,满足=,求椭圆C的离心率的取值范围.参考答案:【考点】椭圆的简单性质.【分析】(1)由题意可得a2﹣b2=1,代入已知点,可得a,b的方程,解方程即可得到所求椭圆方程;(2)设P(x,y),运用两点的距离公式,化简整理,即可得到P的轨迹方程,由题意和圆相交的条件,结合离心率公式,即可得到所求范围.【解答】解:(1)由题意可得c=1,即a2﹣b2=1,又代入点(,1),可得+=1,解方程可得a=,b=,即有椭圆的方程为+=1;(2)由题意方程可得F(﹣1,0),设P(x,y),由PA=PF,可得=?,化简可得x2+y2=2,由c=1,即a2﹣b2=1,由椭圆+=1和圆x2+y2=2有交点,可得b2≤2≤a2,又b=,可得≤a≤,即有离心率e=∈[,].20.如图,在三棱锥P-ABC中,,,,,D为线段AC的中点,E为线段PC上一点.(1)求证:平面BDE⊥平面PAC;(2)当PA∥平面BDE时,求三棱锥P-BDE的体积.参考答案:(1)见证明;(2)【分析】(1)利用线面垂直判定定理得平面,可得;根据等腰三角形三线合一得,利用线面垂直判定定理和面面垂直判定定理可证得结论;(2)利用线面平行的性质定理可得,可知为中点,利用体积桥可知,利用三棱锥体积公式可求得结果.【详解】(1)证明:,
平面又平面
,为线段的中点
平面
平面平面平面(2)平面,平面平面为中点
为中点三棱锥的体积为【点睛】本题考查面面垂直的证明、三棱锥体积的求解,涉及到线面垂直的判定和性质定理、面面垂直的判定定理、线面平行的性质定理、棱锥体积公式、体积桥方法的应用,属于常考题型.21.某种产品的广告费支出与销售额(单位:万元)之间有如下对应数据:(1)求广告费支出与销售额回归直线方程(,);已知,(2)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过的概率.参考答案:考点:统计案例变量相关试题解析:(1)由题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年电脑泡沫清洁剂搬迁改造项目可行性研究报告
- 2024-2030年版中国果品批发市场竞争策略及投资产销状况分析报告
- 2024-2030年版中国婴幼儿服装行业市场销售模式及发展前景展望报告
- 2024-2030年新版中国稀土合金材料项目可行性研究报告(甲级资质)
- 2024-2030年新版中国液化石油气钢瓶项目可行性研究报告
- 2024-2030年新版中国塑钢爬梯项目可行性研究报告
- 2024-2030年新版中国中控百叶帘项目可行性研究报告
- 2024-2030年带式定量给料机搬迁改造项目可行性研究报告
- 2024-2030年商务酒店产业市场深度分析及前景趋势与投资研究报告
- 2024-2030年冶金桥式起重机搬迁改造项目可行性研究报告
- 医院卒中中心建设各种制度、流程汇编
- 邮储高级练习卷三(第12章-第17章)附有答案
- 重庆市江北区2023-2024学年六年级下学期期末考试数学试题
- 军队文职聘用合同管理规定
- 2024年贵州省安顺市西秀区小升初语文试卷
- 2024-2029年中国儿童牙冠行业市场现状分析及竞争格局与投资发展研究报告
- 新时代铁路发展面对面全文内容
- 人工智能与语文阅读理解教学
- 科学素养培育及提升-知到答案、智慧树答案
- 快递主管岗位职责
- 医疗差错、纠纷、事故登记表
评论
0/150
提交评论