山西省朔州市先进中学2021年高二数学文期末试卷含解析_第1页
山西省朔州市先进中学2021年高二数学文期末试卷含解析_第2页
山西省朔州市先进中学2021年高二数学文期末试卷含解析_第3页
山西省朔州市先进中学2021年高二数学文期末试卷含解析_第4页
山西省朔州市先进中学2021年高二数学文期末试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省朔州市先进中学2021年高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列三视图表示的几何图形是()A.正六棱柱 B.正六棱锥 C.正六棱台 D.正六边形参考答案:A【考点】由三视图还原实物图.【专题】空间位置关系与距离.【分析】根据三视图有两个为矩形,则几何体为柱体,具体是哪种柱体由第三个视图决定,可判断出几何体的形状.【解答】解:由已知中的三视图中:正视图和侧视图的轮廓为矩形,故该几何体应该是一个柱体而俯视图是一个正六边形故该几何体是一个正六棱柱故选A【点评】本题考查的知识点是由三视图还原实物图,解答此类问题的关键是:三视图有两个为矩形,则几何体为柱体;三视图有两个为三角形,则几何体为锥体.2.已知函数,,若方程在(0,2)上有两个不等实根,则实数m的取值范围是(

)A. B. C. D.参考答案:C【分析】对的范围分类,即可将“方程在上有两个不等实根”转化为“在内有实数解,且方程的正根落在内”,记,结合函数零点存在性定理即可列不等式组,解得:,问题得解。【详解】当时,可化为:整理得:当时,可化为:整理得:,此方程必有一正、一负根.要使得方程在上有两个不等实根,则在内有实数解,且方程的正根落在内.记,则,即:,解得:.故选:C【点睛】本题主要考查了分类思想及转化思想,还考查了函数零点存在性定理的应用,还考查了计算能力及分析能力,属于难题。3.高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是(

)A

1800

B

3600

C

4320

D

5040

参考答案:B略4.下列命题中,真命题是()A.?x0∈R,使得B.sin2x+≥3(x≠kπ,k∈Z)C.函数f(x)=2x﹣x2有两个零点D.a>1,b>1是ab>1的充分不必要条件参考答案:D【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】A.?x∈R,ex>0,即可判断出正误;B.取x=,则sin2x+=1﹣2=﹣1<3,即可判断出正误;C.f(x)=2x﹣x2有3个零点,其中两个是2,4,另外在区间(﹣1,0)内还有一个,即可判断出正误;D.a>1,b>1?ab>1,反之不成立,例如:取a=4,b=,满足ab>1,但是b<1,即可判断出正误.【解答】解:A.?x∈R,ex>0,因此是假命题;B.取x=,则sin2x+=1﹣2=﹣1<3,因此是假命题;C.f(x)=2x﹣x2有3个零点,其中两个是2,4,另外在区间(﹣1,0)内还有一个,因此共有3个,是假命题;D.a>1,b>1?ab>1,反之不成立,例如:取a=4,b=,满足ab>1,但是b<1,因此a>1,b>1是ab>1的充分不必要条件,是真命题.故选:D.【点评】本题考查了简易逻辑的判定方法、函数零点的判定方法、不等式的性质、指数函数的性质、三角函数的性质,考查了推理能力与计算能力,属于中档题.5.设曲线在点M处切线斜率为3,则点M的坐标为

(

)A.(0,-2)

B.(1,0)

C.(0,0)

D.(1,1)参考答案:B6.执行如图的程序框图,若输入的N是6,则输出p的值是()A.120 B.720 C.1440 D.5040参考答案:B【考点】E7:循环结构.【分析】根据输入的N是6,然后判定k=1,满足条件k<6,则执行循环体,依此类推,当k=6,不满足条件k<6,则退出执行循环体,求出此时p的值即可.【解答】解:若输入的N是6,则:k=1,p=1,执行循环体,p=1,满足条件k<6,k=2,p=2,满足条件k<6,k=3,p=6,满足条件k<6,k=4,p=24,满足条件k<6,k=5,p=120,满足条件k<6,k=6,p=720,不满足条件k<6,则退出执行循环体,此时p=720.故选B.【点评】根据流程图计算运行结果是算法这一模块的重要题型,处理的步骤一般为:分析流程图,从流程图中即要分析出计算的类型,又要分析出参与计算的数据建立数学模型,根据第一步分析的结果,选择恰当的数学模型解模.7.已知的展开式中各项系数的和为2,则该展开式中常数项为(

)A.-80 B.-40 C.40 D.80参考答案:D【分析】中,给赋值1求出各项系数和,列出方程求出,展开式中常数项为的常数项与的系数和,利用二项展开式的通项公式求出通项,进而可得结果【详解】令二项式中的为1得到展开式的各项系数和为,

展开式中常数项为的常数项与的系数和

展开式的通项为,

令得;令,无整数解,

展开式中常数项为,故选D.【点睛】本题主要考查二项展开式定理的通项与各项系数和,属于中档题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.8.设函数在上的导函数为,在上的导函数为,若在上,恒成立,则称函数函数在上为“凸函数”.已知当时,在上是“凸函数”.则在上

(

)A.既有极大值,也有极小值

B.既有极大值,也有最小值C.有极大值,没有极小值

D.没有极大值,也没有极小值参考答案:C略9.已知随机变量X服从正态分布,且,则(

)A.0.8 B.0.2 C.0.1 D.0.3参考答案:D【分析】由已知条件可知数据对应的正态曲线的对称轴为X=3,根据正态曲线的对称性可得结果.【详解】随机变量服从正态分布,则曲线的对称轴为X=3,由可得P(X≤1)=P(X≥5)=0.2,则(1-0.2-0.2)=0.3故选:D【点睛】本题考查根据正态曲线的对称性求在给定区间上的概率,求解的关键是把所求区间用已知区间表示,并根据对称性求解,考查数形结合的应用,属于基础题.10.在(1+x)n(n∈N*)的二项展开式中,若只有x5的系数最大,则n=()A.8 B.9 C.10 D.11参考答案:C【考点】二项式定理的应用.【分析】本题的项的系数和二项式系数相等,根据二项展开式中中间项的二项式系数最大求出n的值.【解答】解:∵只有x5的系数最大,又∵展开式中中间项的二项式系数最大x5是展开式的第6项,∴第6项为中间项,∴展开式共有11项,故n=10故选项为C二、填空题:本大题共7小题,每小题4分,共28分11.已知向量满足则,则

。参考答案:12.若命题“,使得成立”是假命题,则实数a的取值范围是_______.参考答案:【分析】根据原命题为假,可得,都有;当时可知;当时,通过分离变量可得,通过求解最值得到结果.【详解】由原命题为假可知:,都有当时,,则当时,又,当且仅当时取等号

综上所述:本题正确结果:【点睛】本题考查根据命题的真假性求解参数范围,涉及到恒成立问题的求解.13.已知函数.那么函数的最小正周期为

参考答案:试题分析:考点:三角函数化简及性质14.已知,若三向量共面,则________.参考答案:5略15.已知:如图,在的二面角的棱上有两点,直线分别在这个二面用的两个半平面内,且都垂直,已知,则

.参考答案:16.某四棱锥的三视图如图所示,该四棱锥的体积为____________参考答案:317.如图所示电路,有a,b,c三个开关,每个开关开或关的概率为,且是相互独立的,则灯泡甲亮的概率为

;

参考答案:

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数在处取得极值为(1)求a、b的值;(2)若有极大值28,求在上的最大值.参考答案:(Ⅰ)因故

由于在点处取得极值。故有

…………2分即,化简得

…………1分解得

…………2分(Ⅱ)由(Ⅰ)知

…………2分,得当时,故在上为增函数;当时,故在上为减函数当时,故在上为增函数。…………3分由此可知在处取得极大值,在处取得极小值由题设条件知得 …………2分此时,因此上的最小值为

…………2分

略19.已知函数f(x)=x3﹣2ax2﹣3x.(1)当a=0时,求曲线y=f(x)在点(3,f(3))的切线方程;(2)对一切x∈(0,+∞),af′(x)+4a2x≥lnx﹣3a﹣1恒成立,求实数a的取值范围;(3)当a>0时,试讨论f(x)在(﹣1,1)内的极值点的个数.参考答案:【考点】利用导数研究函数的极值;函数恒成立问题;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求导数,利用导数的几何意义,求出切线的斜率,即可求曲线y=f(x)在点(3,f(3))的切线方程;(Ⅱ)由题意:2ax2+1≥lnx,即,求出右边的最大值,即可求实数a的取值范围;(Ⅲ)分类讨论,利用极值的定义,即可讨论f(x)在(﹣1,1)内的极值点的个数.【解答】解:(Ⅰ)由题意知,所以f′(x)=2x2﹣3又f(3)=9,f′(3)=15所以曲线y=f(x)在点(3,f(3))的切线方程为15x﹣y﹣36=0…(Ⅱ)由题意:2ax2+1≥lnx,即设,则当时,g'(x)>0;当时,g′(x)<0所以当时,g(x)取得最大值故实数a的取值范围为.…(Ⅲ)f′(x)=2x2﹣4ax﹣3,,①当时,∵∴存在x0∈(﹣1,1),使得f′(x0)=0因为f′(x)=2x2﹣4ax﹣3开口向上,所以在(﹣1,x0)内f′(x)>0,在(x0,1)内f′(x)<0即f(x)在(﹣1,x0)内是增函数,f(x)在(x0,1)内是减函数故时,f(x)在(﹣1,1)内有且只有一个极值点,且是极大值点.…②当时,因又因为f′(x)=2x2﹣4ax﹣3开口向上所以在(﹣1,1)内f′(x)<0,则f(x)在(﹣1,1)内为减函数,故没有极值点…综上可知:当,f(x)在(﹣1,1)内的极值点的个数为1;当时,f(x)在(﹣1,1)内的极值点的个数为0.…20.(12分)某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.(1)设所选3人中女生人数为,求的分布列及数学期望;(2)在男生甲被选中的情况下,求女生乙也被选中的概率.参考答案:(1)解:的所有可能取值为0,1,2.…………2分依题意,得,,.…………4分∴的分布列为012∴.…………6分21.(13分)一个袋中装有四个形状大小完全相同的球,球的编号分别为,①从袋中随机取出两个球,求取出的球的编号之和不大于的概率;②先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为,求的概率。参考答案:解:①从袋子中随机取两个球,其一切可能的结果组成的基本事件有,,,,,共6个。从袋中随机取出的球的编号之和不大于4的事件共有,两个。因此所求事件的概率为。②先从袋中随机取一个球,记下编号为,放回后,在从袋中随机取一个球,记下编号为,其一切可能的结果有:,共16个有满足条件

的事件为共3个所以满足条件的事件的概率为

故满足条件n<m+2的事件的概率为

略22.棱长为1的正方体ABCD﹣A1B1C1D1中,E、F分别为棱BC、DD1的中点.(1)若平面AFB1与平面BCC1B1的交线为l,l与底面AC的交点为点G,试求AG的长;(2)求点A到平面B1EF的距离.参考答案:考点:点、线、面间的距离计算.专题:空间位置关系与距离.分析:(1)过B1作FA的平行线交面ABCD于G,连接AG,在Rt△ABG中求得AG的长;(2)分别以DA、DC、DD1所在直线为x、y、z轴建立空间直角坐标系,求出平面B1EF的一个法向量,利用向量法求得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论