河北省张家口市察北管理区中学2021年高二数学文上学期期末试卷含解析_第1页
河北省张家口市察北管理区中学2021年高二数学文上学期期末试卷含解析_第2页
河北省张家口市察北管理区中学2021年高二数学文上学期期末试卷含解析_第3页
河北省张家口市察北管理区中学2021年高二数学文上学期期末试卷含解析_第4页
河北省张家口市察北管理区中学2021年高二数学文上学期期末试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省张家口市察北管理区中学2021年高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知两定点F1(-1,0)、F2(1,0),则命题甲:是与的等差中项,命题乙:动点P的轨迹是椭圆,则甲是乙的

(

).A.充分不必要条件

B.必要不充分条件

C.充要条件

D.非充分非必要条件参考答案:A2.在平面直角坐标系中,过点且斜率为的直线不经过(

). A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:C解:由画图可知,直线不过第三象限.3.将两个数交换,使,下面语句正确一组是(

)参考答案:B4.设直线与函数的图象分别交于点,则当达到最小时的值为()A.1

B.

C.

D.参考答案:D5.用冒泡排序法从小到大排列数据

需要经过(

)趟排序才能完成。

A.

B.

C.

D.参考答案:B

解析:经过第一趟得;经过第二趟得;经过第三趟得;经过第四趟得;经过第五趟得;6.下列说法正确的是(

)A.直线平行于平面α内的无数直线,则∥αB.若直线在平面α外,则∥αC.若直线∥b,直线bα,则∥αD.若直线∥b,直线bα,那么直线就平行平面α内的无数条直线参考答案:D略7.在△ABC中,若,,,则△ABC的外接圆半径,将此结论拓展到空间,可得出的正确结论是:在四面体S-ABC中,若SA、SB、SC两两互相垂直,,,,则四面体S-ABC的外接球半径R=(

)A. B. C. D.参考答案:A【分析】四面体中,三条棱、、两两互相垂直,则可以把该四面体补成长方体,长方体的外接球就是四面体的外接球,则半径易求.【详解】四面体中,三条棱、、两两互相垂直,则可以把该四面体补成长方体,,,是一个顶点处的三条棱长.所以外接球的直径就是长方体的体对角线,则半径.故选A.【点睛】本题考查空间几何体的结构,多面体的外接球问题,合情推理.由平面类比到立体,结论不易直接得出时,需要从推理方法上进行类比,用平面类似的方法在空间中进行推理论证,才能避免直接类比得到错误结论.8.以下关于排序的说法中,正确的是(

)A.排序就是将数按从小到大的顺序排序B.排序只有两种方法,即直接插入排序和冒泡排序C.用冒泡排序把一列数从小到大排序时,最小的数逐趟向上漂浮D.用冒泡排序把一列数从小到大排序时,最大的数逐趟向上漂浮参考答案:C9.如果,那么下列不等式中正确的是(

).A.

B.

C.

D.参考答案:D略10.点P在椭圆上运动,Q、R分别在两圆和上运动,则的取值范围为(

A.[3,5]

B

[2,5]

C

[3,6]

D

[2,6]参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.如图,正方体中,,分别为棱,上的点.已知下列判断:①平面;②在侧面上的正投影是面积为定值的三角形;③在平面内总存在与平面平行的直线;④平面与平面所成的二面角(锐角)的大小与点的位置有关,与点的位置无关.其中正确结论的序号为_____________(写出所有正确结论的序号).参考答案:②③略12.命题“”的否定为:

参考答案:

13.无穷数列中,,则_________。参考答案:略14.如图,已知E,F,M,N分别是棱长为2的正方体ABCD-A1B1C1D1的棱AB、BC、CC1、A1B1的中点,则三棱锥N-EFM的体积为_____________

参考答案:15.已知函数f(x)是定义在(﹣∞,+∞)上的偶函数.当x∈(﹣∞,0)时,f(x)=x﹣x4,则当x∈(0,+∞)时,f(x)=.参考答案:﹣x4﹣x考点:函数奇偶性的性质.专题:计算题;转化思想.分析:先设x∈(0,+∞)得﹣x∈(﹣∞,0),代入已知的解析式求出f(﹣x),再由偶函数的关系式f(x)=f(﹣x)求出.解答:解:设x∈(0,+∞),则﹣x∈(﹣∞,0),∵当x∈(﹣∞,0)时,f(x)=x﹣x4,∴f(﹣x)=﹣x﹣x4,∵f(x)是定义在(﹣∞,+∞)上的偶函数,∴f(x)=f(﹣x)=﹣x﹣x4,故答案为:﹣x4﹣x.点评:本题考查了利用函数奇偶性求函数的解析式,即求谁设谁,利用负号转化到已知范围内,求出f(﹣x)的关系式,再利用偶函数的关系式求出f(x)的表达式,考查了转化思想.16.函数上的最大值是

,最小值是

。参考答案:4-a,略17.方程表示一个圆,则的取值范围是:

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知,且,求证:参考答案:证明:∵--6分又

∴故

-------------------12分19.已知a>0,设命题p:函数y=ax在R上单调递增;命题q:不等式ax2﹣ax+1>0对?x∈R恒成立.若p且q为假,p或q为真,求a的取值范围.参考答案:【考点】函数恒成立问题;复合命题的真假;指数函数的单调性与特殊点.【专题】计算题;分类讨论.【分析】先解命题,再研究命题的关系,函数y=ax在R上单调递增,由指数函数的单调性解决;等式ax2﹣ax+1>0对?x∈R恒成立,用函数思想,又因为是对全体实数成立,可用判断式法解决,若p且q为假,p或q为真,两者是一真一假,计算可得答案.【解答】解:∵y=ax在R上单调递增,∴a>1;又不等式ax2﹣ax+1>0对?x∈R恒成立,∴△<0,即a2﹣4a<0,∴0<a<4,∴q:0<a<4.而命题p且q为假,p或q为真,那么p、q中有且只有一个为真,一个为假.①若p真,q假,则a≥4;②若p假,q真,则0<a≤1.所以a的取值范围为(0,1]∪20.(12分)平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线x+y﹣=0交M于A,B两点,P为AB的中点,且OP的斜率为.(Ⅰ)求M的方程;(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.参考答案:【考点】直线与圆锥曲线的关系;直线的一般式方程与直线的垂直关系.【分析】(Ⅰ)把右焦点(c,0)代入直线可解得c.设A(x1,y1),B(x2,y2),线段AB的中点P(x0,y0),利用“点差法”即可得到a,b的关系式,再与a2=b2+c2联立即可得到a,b,c.(Ⅱ)由CD⊥AB,可设直线CD的方程为y=x+t,与椭圆的方程联立得到根与系数的关系,即可得到弦长|CD|.把直线x+y﹣=0与椭圆的方程联立得到根与系数的关系,即可得到弦长|AB|,利用S四边形ACBD=即可得到关于t的表达式,利用二次函数的单调性即可得到其最大值.【解答】解:(Ⅰ)把右焦点(c,0)代入直线x+y﹣=0得c+0﹣=0,解得c=.设A(x1,y1),B(x2,y2),线段AB的中点P(x0,y0),则,,相减得,∴,∴,又=,∴,即a2=2b2.联立得,解得,∴M的方程为.(Ⅱ)∵CD⊥AB,∴可设直线CD的方程为y=x+t,联立,消去y得到3x2+4tx+2t2﹣6=0,∵直线CD与椭圆有两个不同的交点,∴△=16t2﹣12(2t2﹣6)=72﹣8t2>0,解﹣3<t<3(*).设C(x3,y3),D(x4,y4),∴,.∴|CD|===.联立得到3x2﹣4x=0,解得x=0或,∴交点为A(0,),B,∴|AB|==.∴S四边形ACBD===,∴当且仅当t=0时,四边形ACBD面积的最大值为,满足(*).∴四边形ACBD面积的最大值为.【点评】本题综合考查了椭圆的定义、标准方程及其性质、“点差法”、中点坐标公式、直线与椭圆相交问题转化为方程联立得到一元二次方程根与系数的关系、弦长公式、四边形的面积计算、二次函数的单调性等基础知识,考查了推理能力、数形结合的思想方法、计算能力、分析问题和解决问题的能力.21.设函数f(x)=lnx﹣ax+﹣1.(1)当a=1时,求曲线f(x)在x=1处的切线方程;(2)当a=时,求函数f(x)的单调区间;(3)在(2)的条件下,设函数g(x)=x2﹣2bx﹣,若对于?x1∈[1,2],?x1∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.参考答案:【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【分析】(1)求出函数的导数,求出切线的斜率和切点坐标,即可得到切线方程;(2)求出导数,令导数大于0,得到增区间,令小于0,得到减区间,注意定义域;(3)对于?x1∈[1,2],?x2∈[0,1]使f(x1)≥g(x2)成立?g(x)在[0,1]上的最小值不大于f(x)在[1,2]上的最小值.讨论b<0,0≤b≤1,b>1,g(x)的最小值,检验它与f(x)的最小值之间的关系,即可得到b的范围.【解答】解:函数f(x)的定义域为(0,+∞),f′(x)=﹣a﹣

(1)当a=1时,f(x)=lnx﹣x﹣1,∴f(1)=﹣2,f′(x)=﹣1,∴f′(1)=0∴f(x)在x=1处的切线方程为y=﹣2.(2)f′(x)=﹣=﹣.∴当0<x<1,或x>2时,f′(x)<0;

当1<x<2时,f′(x)>0.当a=时,函数f(x)的单调增区间为(1,2);单调减区间为(0,1),(2,+∞).(3)当a=时,由(2)可知函数f(x)在(1,2)上为增函数,∴函数f(x)在[1,2]上的最小值为f(1)=﹣若对于?x1∈[1,2],?x2∈[0,1]使f(x1)≥g(x2)成立?g(x)在[0,1]上的最小值不大于f(x)在[1,2]上的最小值(*)

又g(x)=x2﹣2bx﹣=(x﹣b)2﹣b2﹣,x∈[0,1],①当b<0时,g(x)在[0,1]上为增函数,[g(x)]min=g(0)=﹣>﹣与(*)矛盾

②当0≤b≤1时,[g(x)]min=g(b)=﹣b2﹣,由﹣b2﹣及0≤b≤1,得,≤b≤1;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论