隐马尔科夫模型-英文课件_第1页
隐马尔科夫模型-英文课件_第2页
隐马尔科夫模型-英文课件_第3页
隐马尔科夫模型-英文课件_第4页
隐马尔科夫模型-英文课件_第5页
已阅读5页,还剩69页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

隐马尔科夫模型

HiddenMarkovModel(HMM)HiddenMarkovModelTheproblemsabouttheTemplatemethodHMMisapopularstatisticaltoolDiscrete-TimeMarkovProcessTheoryofHMM:Thethreebasicproblems2ReviewtemplatemethodKeyideaToderivetypicalsequencesofspeechframesforapatternviasomeaveragingprocedureRelyontheuseoflocalspectraldistancemeasurestocomparepatternsDynamicprogramming,temporallyalignpatternsProblemsofTemplatemethod语音是一个随机信号非严格意义上的统计方法StatisticaltechniqueshavebeenwidelyusedinclusteringtocreatereferencepatternsStatisticalsignalcharacterizationinherentinthetemplaterepresentationisonlyimplicitandofteninadequate:neglectsthesecond-orderstatistics缺乏鲁棒性4HMM:populartoolThebasictheoryofHMMwaspublishedinaseriesofclassicpapersbyBaumandhiscolleaguesinthelate1960sandearly1970sHMMwasimplementedforspeech-processingapplicationsbyBakeratCMU,andbyJelinekandhiscolleaguesatIBMinthe1970sHMMprovidesanaturalandhighlyreliablewayofrecognizingspeechforawiderangeofapplications5HMM:populartoolTheunderlyingassumptionoftheHMMthespeechsignalcanbewellcharacterizedasaparametricrandomprocesstheparametersofthestochasticprocesscanbedeterminedinaprecise,well-definedmanner6Discrete-TimeMarkovProcessAsystemwithNdiscretestatesindexedby{1,2,…N}.:Thestateattimet7Discrete-TimeMarkovProcess8时不变系统?ObservableMarkovModelEachstatecorrespondstoanobservableeventExample:weatherState1:rainorsnowState2:cloudyState3:sunny9TheweatherisobservedonceadayCoulditbeusedforwhatcase?ExtensionstoHiddenMarkovModels

--TheUrn-and-BallModelNglassurns,eachwithMdistinctcolorballsAurnisrandomlyselectedfirst,andthenaballischosenatrandom,whosecolorisrecordedastheobservationTheballisthenreplacedintheurnfromwhichitwasselectedTheprocedureisrepeated10……2.2.TheUrn-and-BallModel11HMMforweatherforecastWhatOperationsdoyoudesigntocarryouttheballselection?HowdoyouextendtheMarkovprocesstoHMMtogivemorepreciseweatherforecast?TheoryofHMMTopologyElementsBi-hiddenprocessesThreebasicproblems13HMMTopology:Ergodic14HMMTopology:Left-right15Parallelpathleft-rightHMM16ElementsofHMMN每个模型的状态数M每个状态的可观察现象数状态转移概率分布,其中状态观察现象概率分布初始状态概率分布,其中weusethecompactnotationToindicatethecompleteparametersetofthemodel,thisparameterset,ofcourse,definesaprobabilitymeasureforO,,whichwediscusslater,weusetheterminologyHMMtoindicatetheparametersetandtheassociatedprobabilitymeasureinterchangeablywithoutambiguity.ElementsofHMM18Bi-HiddenprocessesThestatesTheobservations19TheThreeBasicProblemsEvaluation:ForwardprocessOptimalpath:ViterbiAlgorithmTraining:Baum-WelchAlgorithm20Problem1:GiventheobservationsequenceO=(o1,o2…,oT),andamodelhowdoweefficientlycompute,theprobabilityoftheobservationsequence,giventhemodel?Wecanalsoviewtheproblemasoneofscoringhowwellagivenmodelmatchesagivenobservationsequence.Tosolvetheproblemallowsustochoosethemodelthatbestmatchestheobservations.Evaluation21Problem2GiventheobservationsequenceO=(o1,o2,…,oT),andthemodelhowdowechooseacorrespondingstaticsequenceq=(q1q2,…,qt)thatisoptimalinsomesense.inthisproblemtofindthecorrectstatesequence.weusuallyuseanoptimalitycriteriontosolvethisproblemasbestaspossible.Evaluation22Problem3:Howdoweadjustthemodelparameterstomaximize

Inthisproblemweattempttooptimizethemodelparameterstobestdescribehowagivenobservationsequencecomesabout.TheobservationsequenceusedtoadjustthemodelparametersiscalledatrainingsequencebecauseitisusedtotraintheHMM.Evaluation23ProbabilityEvaluationWewishtocalculatetheprobabilityoftheobservationsequence.Consideronesuchfixed-statesequenceWhereq1istheinitialstate.TheprobabilityoftheobservationsequenceOgiventhestatesequenceofqisWherewehaveassumedstatisticalindependenceofobservation.Thusweget

24ProbabilityEvaluationTheprobabilityofsuchastatesequenceqcanbewrittenasThejointprobabilityofOandqoccursimultaneously,issimplytheproductoftheabovetwoterms25ProbabilityEvaluationTheprobabilityofOisobtainedbysummingthisjointprobabilityoverallpossiblestatesequenceq,giving26A.TheForwardProcedureConsidertheforwardvariable

definedasThatis,theprobabilityofthepartialobservationsequence,o1o2…ot,(untiltimet)andstateiattimet,giventhemodel.Wecansolveforinductively,asfollows:27ForwardProcedure1.initialization2.induction3.termination28B.TheBackwardProcedureInasimilarmanner,wecanconsiderabackwardvariabledefinedasThatis,theprobabilityofthepartialobservationsequencefromt+1totheend,givenstateiattimetandthemodelAgainwecansolveforinductively,asFollows:29BackwardProcedure1.initialization2.Induction30BackwardprocedureTheinitializationstep1arbitrarilydefinetobe1foralli.Step2,whichisillustratedinnextfigure,whichshowsthatinordertohavebeeninstateiattimet,andtoaccountfortheobservationsequencefromtimet+1on,youhavetoconsiderallpossiblestatejattimet+131accordingforthetransitionfromitoj,aswellastheobservationot+1instatej.Andthenaccountfortheremainingpartialobservationsequencefromstatej.Wewillseealterhowthebackwardaswellastheforwardcalculationareusedtohelpsolvefundamentalproblem2and3ofHMMsBackwardprocedure32……ai3ai2ai1aiNs1s2s3sNt+1tsiBackwardprocedure33Thereareseveralpossiblewaysofsolvingproblem2,findingthe“optimal”statesequenceassociatedwiththegivenobservationsequence.Toimplementthisproblem2,wecandefinethataposterioriprobabilityvariableBackwardprocedure34Thatis,theprobabilityofbeinginstateiattimet,giventheobservationsequenceO,andthemodel,wecanexpressinseveralforms,includingBackwardprocedure35SinceisequaltowecanwriteasBackwardprocedure36Whereweseethataccountsforthepartialobservationsequenceandstateiatt,whileaccountfortheremainderoftheobservationsequence,givenstateUsing,wecansolvefortheindividuallymostlikelystateattimet,asBackwardprocedure37A.The

ViterbiAlgorithmTofindthesinglebeststatesequence,q=(q1q2…qT),forthegivenobservationsequenceO=(o1o2…oT),weneedtodefinethequantity38ViterbiAlgorithmThatis,isthebestscorealongasinglepath,attimet,whichaccountsforthefirsttobservationsandendsinstatei,byinductionwehave39ViterbiAlgorithmThecompleteprocedureforfindingthebeststatesequencecannowbestatedasfollows:1.Initialization40ViterbiAlgorithm2.Recursion3.Termination41ViterbiAlgorithm4.Path(statesequence)backtrackingItshouldbenotedthattheViterbialgorithmissimilarinimplementationtotheforwardcalculation.42B.Alternative

ViterbiImplementationBytakinglogarithmsofthemodelparameters,theViterbialgorithmoftheprecedingsectioncanbeimplementedwithouttheneedforanymultiplications,thus:43ViterbiAlgorithm0.Preprocessing44ViterbiAlgorithm1.Initialization2.Recursion

45ViterbiAlgorithm3.Termination4.Backtracking46time-seriesmodeling声学统计模型(语音识别)语言模型通信系统生物信号处理手写字符识别面部识别—Featureextraction(FerdinandoSamariaetc.atOlivettiResearch,Ltd)手势识别一、HMM应用领域HMM的应用471.1HMM在生物信号处理中的应用Forproteinandnucleicacidsequenceanalysis(WashingtonUniversity)TherecognitionofHumanGenesinDNA(UniversityofCalifornia)DetectingRemoteProteinHomologies(UCSC)Estimatingaminoaciddistributions481.2HMM应用与手势识别Handmotionisaneffectivemeansofhumancommunicationsinrealworld49二、HMM的训练标准ML--MaximumLikelihoodMMI--MinimumdiscriminationinformationMDI—MaximummutualinformationMMD—MaximummodeldistanceCT–CorrectiveTrainingMCE–MinimumclassificationError50ThestandardMLdesigncriterionistouseatrainingsequenceofobservationsOtoderivethesetofmodelparameters,yieldingAnyofthereestimationalgorithmsdiscussedpreviouslyprovidesasolutiontothisoptimizationproblem.ML--MaximumLikelihood51Theminimumdiscriminationinformation(MDI)isameasureofclosenessbetweentwoprobabilitymeasuresunderthegivenconstraintRisdefinedbyWhereMDI—Maximummutualinformation52ThestandardMLcriterionistousetoestimatemodelparameters,yieldingThemutualinformationbetweenanobservationsequenceandthewordv,parameterizedby,isTheMMIcriterionistofindtheentiremodelsetsuchthatthemutualinformationismaximized,MMI–Minimumdiscriminationinformation53三、HMM的应用问题1.Scaling2.MultipleObservationSequences3.InitialEstimatesofHMMparameters.4.EffectsofInsufficientTrainingData5.ChoiceofModel54Initially,fort=1,wesetForeacht,,intermsofthepreviouslyscaledThatis,WedeterminethescalingcoefficientasGiving3.1Scaling55EachEachSointermsofthescaledvariables,wegetFinallythetermcanbeseentobeoftheform3.1Scaling56TheonlyrealchangetotheHMMprocedurebecauseofscalingistheprocedureforcomputing.Wecannotmerelysumuptheterms,becausethesearescaledalready.However,wecanusethepropertythatThuswehaveoror3.1Scaling57Themajorproblemwithleft-rightmodelsishatonecannotuseasingleobservationsequencetotrainthemodel.Thisisbecausethetransientnatureofthestateswithinthemodelallowsonlyasmallnumberofobservationsforanystate.Hence,tohavesufficientdatatomakereliableestimatesofallmodelparameters,onehastousemultipleobservationsequences.3.2MultipleObservationSequences58HowdowechooseinitialestimatesoftheHMMparameterssothatthelocalmaximumisequaltoorascloseaspossibletotheglobalmaximumofthelikelihoodfunction?ExperiencehasshownthateitherrandomoruniforminitialestimatesoftheandAparametersareadequateforgivingusefulreestimatesoftheseparametersinalmostallcases.However,fortheBexperienceshasshownthatGoodinitialestimatesarehelpfulinthediscretesymbolcaseandareessentialinthecontinuous-distributioncase.3.3InitialEstimatesofHMMparameters594.HMMsystemforIsolatedWordRecognition1.ChoiceofModelParameters2.Segmentalk-meanssegmentationwithclustering.3.IncorporationofSateDurationintotheHMM4.HMMIsolated-DigitPerformance60Todoisolatedwordspeechrecognition,wemustperformthefollowing:1.Foreachwordvinthevocabulary,wemustbuildanHMM--thatis,wemustestimatethemodelparameter(A,B,)thatoptimizethelikelihoodofthetrainingsetobservationvectorsforthevthword.2.Foreachunknownwordtoberecognized,theprocessingshowninFigure4.1mustbecarriedout,namely,measurementoftheobservationsequence,viaafeatureanalysisofthespeechcorrespondingtotheword;followedbycalculationofmodellikelihoodsforallpossiblemodels,;followedbyselectionofthewordwhosemodellikelihoodishighest—thatis,4.1HMMRecognizerofIsolatedWords61BlockdiagramofanisolatedwordHMMrecognizer62ThefigureshowsaplotofaverageworderrorrateversusN,forthecaseofrecognitionofisolateddigits.ItcanbeseenthattheerrorissomewhatinsensitivetoN,achievingalocalminimumatN=6;however,differencesinerrorrateforvaluesofNcloseto6aresmall.4.2ChoiceofModelParametersAverageworderrorrate(foradigitsvocabulary)versusthenumberofstatesNintheHMM(afterRabineretal.[18])63Thefigureshowsacomparisonofmarginaldistributionsagainstahistogramoftheactualobservationswithinastate.Theobservationvectorsareninthorder,andthemodeldensityuses M=5mixtures.Thecovariance matricesareconstrainedtobe diagonalforeachindividual mixture.Theresultsofthe figureareforthefirstmodel stateoftheword“zero.”4.2ChoiceofModelParameters64

figureshowsacurveofaverageworderrorrateversustheparameter(onalogscale)forastandardword-recognitionexperiment.Itcanbeseenthatoveraverybroadrange()theaverageerrorrateremainsataboutaconstantvalue;however,whenissetto0(i.e.,),thentheerrorrateincreasessharply.Similarly,forcontinuousdensitiesitisimportanttoconstrainthemixturegainsaswellasthediagonalcovariancecoefficientstobegreaterthanorequaltosomeminimumvalues.4.2ChoiceofModelParameters65TheFigure(nextpage)showsalog-energyplot,anaccumulatedlog-likelihoodplot,andastatesegmentationforoneoccurrenceoftheword“six.”Thestatescorrespondroughlytothesoundsinthespokenword“six.”Theresultofsegmentingeachofthetrainingsequencesis,foreachoftheNstatejaccordingtothecurrentmodel.Theresultingmodelreestimationprocedureisusedtoreestimateallmodelparameters.Theresultingmodelisthencomparedtothepreviousmodel(bycomputingadistancescorethatreflectsthestatisticalsimilarityoftheHMMs).4.3K-meanstrainingprocedure664.3K-meanstrainingprocedureThesegmentalk-meanstrainingprocedureusedtoestimateparametervaluesfortheoptimalcontinuousmixturedensityfittoafinitenumberofobservationsequences.67Atypicalsetofhistogramsofforafive-statemodeloftheword“six”isshownintheFigure.thefirsttwostatesaccountfortheinitial/s/in“six”;thethirdstateaccountsforthetransitiontothevowel/i/;thefourthstateaccountsforthevowel;andthefifthstateaccountsforthestopandthefinal/s/sound.4.4IncorporationofSateDurationintotheHM

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论