版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Contents§5.1Representationofdiscrete aperiodicsignals:Thediscrete-time Fouriertransform§5.2TheFTforperiodicsignals§5.1Thediscrete-timeFouriertransformDevelopmentofthediscreteFTAgeneralsequencex[n]0Fromx[n],weconstructaperiodicx[n]forwhichx[n]isoneperiod.§5.1Thediscrete-timeFouriertransform0N-N–AsN,x[n]=x[n]§5.1Thediscrete-timeFouriertransformDefiningthefunctionthen§5.1Thediscrete-timeFouriertransformEq.(5.1)becomes
AsN,0,andasN,,0d,k0.
For,∵X(ejω)·ejn
withperiod2π,theisNinnumber,withintervalofwidth=2/N,∴intervalofhaveawidthof2π.§5.1Thediscrete-timeFouriertransformTherefore,asN→∞,andEq(5.7)becomeswhereThuswehaveanothertransformpair,discreteFTpair,X(e
jω)—thediscreteFT,orspectrumofx[n].
§5.1Thediscrete-timeFouriertransformNotealsothat§5.1Thediscrete-timeFouriertransformThemajordifferencesbetweendiscreteFTwithcontinuousFTare(1)X(ej)isperiodic(withperiod2),whileX(j)isnot.Interestingcorrespondingandduality:
TimesignalCorrespondingakorX(j)orX(ej)
Periodic↔Discrete
Aperiodic↔ContinuousContinuous↔
Aperiodic Discrete↔Periodic§5.1Thediscrete-timeFouriertransformEquation(5.8)involvesanintegrationonlyoverafrequencyinterval(anyintervaloflength2)
whilecontinuous(3)Inthespectrumgraph,lowfrequenciesnearevenmultiplesofandhighfrequenciesnearoddmultiplesof(seePage362:Figure5.3)§5.1Thediscrete-timeFouriertransformExamplesofdiscreteFT Example5.1 Considerthesignal§5.1Thediscrete-timeFouriertransformThemagnitudeandphaseofX(ejω)showninFigurebelow.1023nx[n](0<a<1)1a2aa3|X(ejω)|0π-2π-π2π1/(1-a)1/(1+a)§5.1Thediscrete-timeFouriertransformExample5.2 ThissignalissketchedinFigure.1
Inthiscase,X(ejω)isrealandisillustratedinFigure5.5(b)for0<a<1P(364).§5.1Thediscrete-timeFouriertransformExample5.3ThespectrumseeFigure5.6(b)(P365).
x[n]=1,|n|≤N10,|n|>N110n§5.1Thediscrete-timeFouriertransformExample5.4[n]1§5.1Thediscrete-timeFouriertransformConvergenceissuesassociatedwiththediscreteFTForfiniteduration,forextremelybroadclassofsignalswithinfiniteduration.Eitherifx[n]isabsolutelysummableorhas
finiteenergyEq(5.9)willconverge.§5.2TheFTforperiodicsignalsConsiderthesignal(simplicity)
thisFTmightexpect
20§5.2TheFTforperiodicsignalsTocheck,substitutingEq.(5.18)intoEq.(5.8)SoEq(5.17)and(5.18)isFTpair.§5.2TheFTforperiodicsignalsTherefore,aperiodicsignalitsFTis§5.2TheFTforperiodicsignalsExample5.5FromEq.(5.18)§5.2TheFTforperiodicsignals……1/21/2……Assignments(P400):5.2,5.3Contents§6.1Themagnitude-phaserepresentationofFT§6.2Themagnitude-phaserepresentationofthefrequencyresponseofLTIsystems§6.3Time-domainpropertiesofidealfrequencyselectivefilters§6.4Time-domainandfrequency-domainaspectsofnon-idealfilters(omit)Themagnitude-phaserepresentationofFTContinuousFTDiscreteFT|X(j)|describestheinformationaboutthebasicfrequencycontentofasignal,whileX(j)doesnot.X(j)haveasignificanteffectonthenatureofthesignalandthuscontainasubstantialamountofinformationaboutthesignal.Themagnitude-phaserepresentationofFT
Different1,2,and3,resultingsignalscandiffersignificantly(seefigure6.1inP425),andexamplefromx(t)x(-t)
Ingeneral,changesinthephasefunctionofX(jω)leadtochangesinthetime-domaincharacteristicsofthesignalx(t).Example:Themagnitude-phaserepresentationofLTI|H(jω)|iscommonlyreferredtoasthegainofthesystem.H(j)isreferredtoasthephaseshiftofthesystem.Themagnitude-phaserepresentationofLTILinearandnonlinearphasesystemOutputofsystemisatimeshiftoftheinput
y(t)=x(t-t0)Themagnitude-phaserepresentationofLTIInthediscretecase,theeffectoflinearphaseissimilartothatinthecontinuouscasewhenslopeofthelinearphaseisaninteger.Obtainasignalthatmaylookconsiderablydifferentfromtheinputsignal.(seefigure6.3cinP429)Themagnitude-phaserepresentationofLTIGroupdelay GroupdelayisdefinedasGroupdelayateachfrequencyequalsthenegativeoftheslopeofthephaseatthefrequency.constantTime-domainpropertiesidealfrequencyselectivefilters
Ingeneral,anideallowpassfilterhasafrequencyresponseoftheformForzerophasefora=0e-ja,||c0,||>c1,
||c0,||>cTheimpulseresponse:tTime-domainpropertiesidealfrequencyselectivefilters
Thestepresponse
isSineintegralfunction.TwospecialfeaturesoffunctionSi(y):(1)
Asy,Si(y)/2,waveformhasoscillation,maxaty=.(2)Si(-y)=-Si(y),oddfunction.Time-domainpropertiesidealfrequencyselectivefilters
Time-domainpropertiesidealfrequencyselectivefilters
Fromwaveformofh(t)ands(t),wecansee:(1)
Ifa0,thenh(t)ands(t)aredelayedbya.Theresponsehasdeformation,extentofdeformation1/c,asc,deformationdisappear.
Theideallowpassfilterisanticausal.
(4)
Establishofresponserequiresometimetr—risetime,tr
1/c.Time-domainpropertiesidealfrequencyselectivefilters
Assignment(P489):6.1,6.3Contents§7.1Representationofacontinuoussignalbyitssamples:thesamplingtheorem.§7.2(omit)§7.3Theeffectofundersampling:aliasingIntroduction
Whatisthemeaningofsampling? Representationofacontinuoussignalbyitssamples.Whysampling? Processingdiscretesignalsismoreflexible.Time-divisionmultiplexing(TDM).RepresentationofacontinuoussignalthesamplingtheoremImpulse-trainsampling 1)Samplingprinciple SamplingprocessisdepictedintheFigurebelow.wherex(t)isthatwewishtosample,andx(t)xp(t)p(t)tx(t)isimpulsestrainRepresentationofacontinuoussignal
ItsperiodTisreferredassamplingperiod,s=2/Tas
samplingfrequency.tx(t)tp(t)-2T2T-TT……txp(t)……-2T2T-TTx(0)(t)x(T)(t-T)Representationofacontinuoussignal
xp(t)isanimpulsestrainwiththeamplitudesofimpulsesequaltosamplesofx(t)atintervalsspacedbyT.Representationofacontinuoussignal
ThatisXp(jω)isaperiodicofωconsistingofasuperpositionofshiftedreplicasofX(jω),scaledby1/T,asillustratedinrightfigurebelow.0P(j)……0XP(j)……s>2ms<2m0XP(j)……RepresentationofacontinuoussignalFromEq(7.6)andfigureabovetoobtain:(1)
Xp(j)isaperiodicfunctionwithperiodofsAslongasmislimitedands2m,eachofXp(j)willcontainalltheinformationaboutX(j),withoutoverlapping.Inthiscase,x(t)canberecoveredexactlyfromxp(t)bymeansofalowpassfilterwiththegainTandacutofffrequencyωc.ωm<ωc<(ωs-ωm)Thisbasicresultsarereferredtoasthesamplingtheorem.Representationofacontinuoussignal2)SamplingTheorem
Letx(t)beaband-limitedsignal
withX(j)=0for>m,thenx(t)isuniquely
determinedbyitssamples
x(nT),n=0,±1,±2,…
Where
Giventhesesamples,wecanreconstructx(t).RepresentationofacontinuoussignalThefrequency2miscommonlyreferredtoastheNyquistrate.Thefrequencym
isoftenreferredtoastheNyquistfrequency.0-ccRepresentationofacontinuoussignalSamplingwithazeroorderholdSamplingprinciplewithazero-hold: impulse-trainsamplingfollowingbyLTIsystemwitharectangularimpulseresponse.t0T1Representationofacontinuoussignaltx(t)txp(t)……-2T2T-TTtx0(t)…Clearly,bandwidthofx0(t)<<bandwidthofxp(t).
andx0(t)x(t)Tx(nT)RepresentationofacontinuoussignalReconstructx(t)fromx0(t)Zero-orderholdfollowingbyareconstructionfilterwithhr(t)[orHr(j)]hr(t)Hr(j)t0T1equivalentH(j)Representationofacontinuoussignal
Thisrequiresthat IfcofH(j)equaltos/2,thenmagnitudeandphaseforHr(j)isshowninfigurebelow.Representationofacontinuoussignalnow,cofH(j)iss/2.§7.3Theeffectofundersampling:aliasingWhen,theindividualtermsinEq(7.6)overlap.Thiseffectisreferredtoasaliasing.Forsimply,consideroriginalsignalisAliasinggiveseffectandconsequences:
Whenaliasingoccurs,theoriginalfrequencyω0
takesontheidentityoflowerfrequency(ωs-ω0).Inthesecase,thereconstructedsignalhaveachangeinthesignofthephase,i.e.aphasereversal.seeFigure7.16(b)and(c)below.§7.3Theeffectofundersampling:aliasingoriginalsignalsamplesreconstructedtsamplests=30Fig.7.16(b)§7.3Theeffectofundersampling:aliasingoriginalsignalsampless=1.50ttsamplesreconstructedphasereversalFig.7.16(c)Assignments(P556:7.1,7.2,7.3,
7.6)Contents§8.0Introduction§8.1Complexexponentialandsinusoidalamplitudemodulation§8.2DemodulationforsinusoidalAM§8.0IntroductionThefunctionofcommunicationsystems:Modulation,Transmit,DemodulationWhymodulation?§8.0IntroductionModulation—Theprocessofcarryingx(t)onc(t).Modulationmethods: AmplitudeModulation(AM) FrequencyModulation(FM) PulseCodeModulation(PCM)Demodulation: Theinverseprocessofmodulation,i.e.theprocessofrecoveringtheoriginalsignalfrommodulatedsignal.ComplexexponentialandsinusoidalAMAmplitudemodulationwithacomplexexponentialcarrierPrincipleLetX(jω),Y(jω),andC(jω)denotingFTofx(t),y(t),andc(t)respectively.ComplexexponentialandsinusoidalAM
Thus,thespectrumofy(t)issimplythatofinput,shiftedinfrequencybyanamountequaltoc.
ComplexexponentialandsinusoidalAMItisclearthatx(t)canberecoveredfromy(t),tjce)t(y)t(xw-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版玫瑰精油神经酸胶囊产品研发合作合同2篇
- 活动楼施工组织设计
- 初中数学微课课件
- 《客户关系管理实务》期末考试试卷7-6
- 《地表水水质自动监测数据审核技术规范》(征求意见稿)
- 《客户关系管理实务》电子教案 11客户关系的选择
- 北师大版七年级生物上册第3单元过关训练课件
- 部编二上拍手歌说课
- 《文房石砚石》课件
- 教科版小学综合实践6下(教案+课件)3未来的汽车的探索与实践
- 档案管理规范培训课件学习培训课件
- 合力为科技hlw8012应用设计v2.31hlw8012参数计算说明
- 公司人力资源信息系统项目投标文件
- 高中音乐 鉴赏 第五单元《诗乐相彰》第九节 独唱曲 课件
- 民营企业的职务犯罪--ppt课件
- 02-6 0-36月龄儿童中医药健康管理方案.
- 第四章物料衡算.
- 物理专业常用英语词汇
- 技师、高级技师管理办法
- 施工布置及平面布置图
- 第一章 基本情况特征
评论
0/150
提交评论