版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于()A.2B.3C.4D.62.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2 B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<03.某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x=3时,y=18,那么当半径为6cm时,成本为()A.18元 B.36元 C.54元 D.72元4.以坐标原点为圆心,以2个单位为半径画⊙O,下面的点中,在⊙O上的是()A.(1,1) B.(,) C.(1,3) D.(1,)5.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中点,则CM的长为()A. B.2 C. D.36.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE的值是()A. B. C.6 D.47.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣88.已知x+=3,则x2+=()A.7 B.9 C.11 D.89.已知a-2b=-2,则4-2a+4b的值是()A.0 B.2 C.4 D.810.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A.0B.3C.﹣3D.﹣711.在下列四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C.. D.12.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是()A.1 B.3 C.4 D.5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.对于实数,我们用符号表示两数中较小的数,如.因此,________;若,则________.14.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次的运算结果是____________(用含字母x和n的代数式表示).15.若关于x的分式方程有增根,则m的值为_____.16.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x个白球,然后从箱中随机取出一个白球的概率是2317.太阳半径约为696000千米,数字696000用科学记数法表示为千米.18.今年我市初中毕业暨升学统一考试的考生约有35300人,该数据用科学记数法表示为________人.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)矩形AOBC中,OB=4,OA=1.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E。当点F运动到边BC的中点时,求点E的坐标;连接EF,求∠EFC的正切值;如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.20.(6分)如图1,□OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=(x>0)的图象经过点B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,将线段OA延长交y=(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,①求直线BD的解析式;②求线段ED的长度.21.(6分)先化简,再求值:(1﹣)÷,其中a=﹣1.22.(8分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售.(1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;(2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值.23.(8分)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,AB=BD,反比例函数在第一象限内的图象经过点D(m,2)和AB边上的点E(n,).(1)求m、n的值和反比例函数的表达式.(2)将矩形OABC的一角折叠,使点O与点D重合,折痕分别与x轴,y轴正半轴交于点F,G,求线段FG的长.24.(10分)如图,在Rt△ABC中,∠C=90°,O、D分别为AB、AC上的点,经过A、D两点的⊙O分别交于AB、AC于点E、F,且BC与⊙O相切于点D.(1)求证:DF=(2)当AC=2,CD=1时,求⊙O的面积.25.(10分)(1)计算:;(2)化简:.26.(12分)如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点E.(1)求证:DE⊥AC;(2)连结OC交DE于点F,若,求的值.27.(12分)矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,
∴R=4cm.故选C.2、A【解析】分析:A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;D、由x1•x2=﹣2,可得出x1<0,x2>0,结论D错误.综上即可得出结论.详解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,结论A正确;B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1<0,x2>0,结论D错误.故选A.点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3、D【解析】
设y与x之间的函数关系式为y=kπx2,由待定系数法就可以求出解析式,再求出x=6时y的值即可得.【详解】解:根据题意设y=kπx2,∵当x=3时,y=18,∴18=kπ•9,则k=,∴y=kπx2=•π•x2=2x2,当x=6时,y=2×36=72,故选:D.【点睛】本题考查了二次函数的应用,解答时求出函数的解析式是关键.4、B【解析】
根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.【详解】A选项,(1,1)到坐标原点的距离为<2,因此点在圆内,B选项(,)到坐标原点的距离为=2,因此点在圆上,C选项(1,3)到坐标原点的距离为>2,因此点在圆外D选项(1,)到坐标原点的距离为<2,因此点在圆内,故选B.【点睛】本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.5、C【解析】
延长BC到E使BE=AD,利用中点的性质得到CM=DE=AB,再利用勾股定理进行计算即可解答.【详解】解:延长BC到E使BE=AD,∵BC//AD,∴四边形ACED是平行四边形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中点,∵M是BD的中点,∴CM=DE=AB,∵AC⊥BC,∴AB==,∴CM=,故选:C.【点睛】此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.6、C【解析】
由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【详解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故选C.7、A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.8、A【解析】
根据完全平方公式即可求出答案.【详解】∵(x+)2=x2+2+∴9=2+x2+,∴x2+=7,故选A.【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式.9、D【解析】∵a-2b=-2,∴-a+2b=2,∴-2a+4b=4,∴4-2a+4b=4+4=8,故选D.10、B【解析】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.【详解】∵一次函数y=﹣2x+3中k=﹣2<0,∴y随x的增大而减小,∴在0≤x≤5范围内,x=0时,函数值最大﹣2×0+3=3,故选B.【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小.11、B【解析】试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,因此:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.考点:轴对称图形和中心对称图形12、D【解析】
根据二次函数的图象与性质即可求出答案.【详解】解:①由抛物线的对称轴可知:,∴,由抛物线与轴的交点可知:,∴,∴,故①正确;②抛物线与轴只有一个交点,∴,∴,故②正确;③令,∴,∵,∴,∴,∴,∵,∴,故③正确;④由图象可知:令,即的解为,∴的根为,故④正确;⑤∵,∴,故⑤正确;故选D.【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2或-1.【解析】①∵--,∴min{-,-}=-;②∵min{(x−1)2,x2}=1,∴当x>0.5时,(x−1)2=1,∴x−1=±1,∴x−1=1,x−1=−1,解得:x1=2,x2=0(不合题意,舍去),当x⩽0.5时,x2=1,解得:x1=1(不合题意,舍去),x2=−1,14、【解析】试题分析:根据题意得;;;根据以上规律可得:=.考点:规律题.15、±【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.【详解】方程两边都乘x-3,得x-2(x-3)=m2,∵原方程增根为x=3,∴把x=3代入整式方程,得m=±.【点睛】解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16、1.【解析】
先根据概率公式得到2+x5+x=2【详解】根据题意得2+x5+x解得x=4.故答案为:4.【点睛】本题考查了概率公式:随机事件A的概率PA=事件17、.【解析】试题分析:696000=6.96×1,故答案为6.96×1.考点:科学记数法—表示较大的数.18、3.53×104【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,35300=3.53×104,故答案为:3.53×104.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)E(2,1);(2);(1).【解析】
(1)先确定出点C坐标,进而得出点F坐标,即可得出结论;(2)先确定出点F的横坐标,进而表示出点F的坐标,得出CF,同理表示出CE,即可得出结论;(1)先判断出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出结论.【详解】(1)∵OA=1,OB=4,∴B(4,0),C(4,1),∵F是BC的中点,∴F(4,),∵F在反比例y=函数图象上,∴k=4×=6,∴反比例函数的解析式为y=,∵E点的坐标为1,∴E(2,1);(2)∵F点的横坐标为4,∴F(4,),∴CF=BC﹣BF=1﹣=∵E的纵坐标为1,∴E(,1),∴CE=AC﹣AE=4﹣=,在Rt△CEF中,tan∠EFC=,(1)如图,由(2)知,CF=,CE=,,过点E作EH⊥OB于H,∴EH=OA=1,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴,∴,∴BG=,在Rt△FBG中,FG2﹣BF2=BG2,∴()2﹣()2=,∴k=,∴反比例函数解析式为y=.点睛:此题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,相似三角形的判定和性质,锐角三角函数,求出CE:CF是解本题的关键.20、(1)B(2,4),反比例函数的关系式为y=;(2)①直线BD的解析式为y=-x+6;②ED=2【解析】试题分析:(1)过点A作AP⊥x轴于点P,由平行四边形的性质可得BP=4,可得B(2,4),把点B坐标代入反比例函数解析式中即可;(2)①先求出直线OA的解析式,和反比例函数解析式联立,解方程组得到点D的坐标,再由待定系数法求得直线BD的解析式;②先求得点E的坐标,过点D分别作x轴的垂线,垂足为G(4,0),由沟谷定理即可求得ED长度.试题解析:(1)过点A作AP⊥x轴于点P,则AP=1,OP=2,又∵AB=OC=3,∴B(2,4).,∵反比例函数y=(x>0)的图象经过的B,∴4=,∴k=8.∴反比例函数的关系式为y=;(2)①由点A(2,1)可得直线OA的解析式为y=x.解方程组,得,.∵点D在第一象限,∴D(4,2).由B(2,4),点D(4,2)可得直线BD的解析式为y=-x+6;②把y=0代入y=-x+6,解得x=6,∴E(6,0),过点D分别作x轴的垂线,垂足分别为G,则G(4,0),由勾股定理可得:ED=.点睛:本题考查一次函数、反比例函数、平行四边形等几何知识,综合性较强,要求学生有较强的分析问题和解决问题的能力.21、原式==﹣2.【解析】分析:原式利用分式混合运算顺序和运算法则化简,再将a的值代入计算可得.详解:原式===,当a=﹣1时,原式==﹣2.点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.22、(1)y=﹣50x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.【解析】
(1)根据题意可以得到y关于x的函数解析式,本题得以解决;(2)根据题意可以得到x的不等式组,从而可以求得x的取值范围,从而可以得到y的最大值,本题得以解决.【详解】(1)由题意可得,y=10×50(30﹣x)+3[100x﹣50(30﹣x)]=﹣50x+10500,即y与x的函数关系式为y=﹣50x+10500;(2)由题意可得,,得x,∵x是整数,y=﹣50x+10500,∴当x=12时,y取得最大值,此时,y=﹣50×12+10500=9900,30﹣x=18,答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.23、(1)y=;(2).【解析】
(1)根据题意得出,解方程即可求得m、n的值,然后根据待定系数法即可求得反比例函数的解析式;(2)设OG=x,则GD=OG=x,CG=2﹣x,根据勾股定理得出关于x的方程,解方程即可求得DG的长,过F点作FH⊥CB于H,易证得△GCD∽△DHF,根据相似三角形的性质求得FG,最后根据勾股定理即可求得.【详解】(1)∵D(m,2),E(n,),∴AB=BD=2,∴m=n﹣2,∴,解得,∴D(1,2),∴k=2,∴反比例函数的表达式为y=;(2)设OG=x,则GD=OG=x,CG=2﹣x,在Rt△CDG中,x2=(2﹣x)2+12,解得x=,过F点作FH⊥CB于H,∵∠GDF=90°,∴∠CDG+∠FDH=90°,∵∠CDG+∠CGD=90°,∴∠CGD=∠FDH,∵∠GCD=∠FHD=90°,∴△GCD∽△DHF,∴,即,∴FD=,∴FG=.【点睛】本题考查了反比例函数与几何综合题,涉及了待定系数法、勾股定理、相似三角形的判定与性质等,熟练掌握待定系数法、相似三角形的判定与性质是解题的关键.24、(1)证明见解析;(2)2516【解析】
(1)连接OD,由BC为圆O的切线,得到OD垂直于BC,再由AC垂直于BC,得到OD与AC平行,利用两直线平行得到一对内错角相等,再由OA=OD,利用等边对等角得到一对角相等,等量代换得到AD为角平分线,利用相等的圆周角所对的弧相等即可得证;
(2)连接ED,在直角三角形ACD中,由AC与CD的长,利用勾股定理求出AD的长,由(1)得出的两个圆周角相等,及一对直角相等得到三角形ACD与三角形ADE相似,由相似得比例求出AE的长,进而求出圆的半径,即可求出圆的面积.【详解】证明:连接OD,∵BC为圆O的切线,∴OD⊥CB,∵AC⊥CB,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠OAD,则DF=(2)解:连接ED,在Rt△ACD中,AC=2,CD=1,根据勾股定理得:AD=5,∵∠CAD=∠OAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴ADAE=AC∴AE=52,即圆的半径为5则圆的面积为25π16【点睛】此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及勾股定理,熟练掌握相关性质是解本题的关键.25、(1)4+;(2).【解析】
(1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;(3)根据分式的减法和除法可以解答本题.【详解】(1)=4+1+|1﹣2×|=4+1+|1﹣|=4+1+﹣1=4+;(2)===.【点睛】本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法.26、(1)证明见解析(2)【解析】
(1)连接OD,根据三角形的中位线定理可求出OD∥AC,根据切线的性质可证明DE⊥OD,进而得证.(2)连接AD,根据等腰三角形的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位管理制度合并选集员工管理篇十篇
- 《学习英语的困难》课件
- 单位管理制度分享大合集【员工管理篇】十篇
- 《证券经纪与交易》课件
- 2024年农业局上半年科技教育工作总结
- 九上历史:第一次月考A卷(考试版+解析)
- DBJT 13-313-2019 城市轨道交通工程渗漏水治理技术规程
- XX中学师生生活综合楼可研报告
- 《液压支架技术》课件
- 《证券投资要义》课件
- 口腔颌面外科学 09颞下颌关节疾病
- 应急物资清单明细表
- 房地产估计第八章成本法练习题参考
- 《社会主义核心价值观》优秀课件
- DB11-T1835-2021 给水排水管道工程施工技术规程高清最新版
- 《妊娠期糖尿病患者个案护理体会(论文)3500字》
- 《小学生错别字原因及对策研究(论文)》
- 便携式气体检测报警仪管理制度
- 酒店安全的管理制度
- (大洁王)化学品安全技术说明书
- 2022年科学道德与学术规范知识竞赛决赛题库(含答案)
评论
0/150
提交评论