空间向量的正交分解及其坐标表示_第1页
空间向量的正交分解及其坐标表示_第2页
空间向量的正交分解及其坐标表示_第3页
空间向量的正交分解及其坐标表示_第4页
空间向量的正交分解及其坐标表示_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.1.4空间向量的正交分解

及其坐标表示由平面向量基本定理知,平面内的任意一个向量都可以用两个不共线的向量来表示,对于空间的任意一个向量,有没有类似的结论呢?如图,设i,j,k是空间三个两两垂直的向量,且有公共起点O。对于空间任意一个向量p=OP,设点Q为点P在i,j所确定的平面上的正投影,由平面基本定理可知,在OQ,k所确定的平面上,存在实数z,使得OP=OQ+zk,而在i,j所确定的平面上,由平面向量基本定理可知,存在有序之前数对(x,y),使得OQ=xi+yj.从而OP=OQ+zk=xi+yj+zk.xyzkijQPO一、空间向量基本定理:xyzkijQPO如果i,j,k是空间三个两两垂直的向量,对空间任一个向量p,存在一个有序实数组使得p=xi+yj+zk.xi,yj,zk为向量p在i,j,k上的分向量。思考:在空间中,如果用任意三个不共面向量a,b,c代替两两垂直的向量i,j,k,能得到类似的结论吗?空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc.空间所有向量的集合{p|p=xa+yb+zc,x,y,z∈R}{a,b,c}叫做空间的一个基底,a,b,c都叫做基向量。二、空间直角坐标系

单位正交基底:如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用i,j,k表示

空间直角坐标系:在空间选定一点O和一个单位正交基底i、j、k。以点O为原点,分别以i、j、k的正方向建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这样就建立了一个空间直角坐标系O--xyz

点O叫做原点,向量I、j、k都叫做坐标向量.通过每两个坐标轴的平面叫做坐标平面。

在空间直角坐标系O--xyz中,对空间任一点,A,对应一个向量OA,于是存在唯一的有序实数组x,y,z,使OA=xi+yj+zk

在单位正交基底i,j,k中与向量OA对应的有序实数组(x,y,z),叫做点A在此空间直角坐标系中的坐标,记作A(x,y,z),其中x叫做点A的横坐标,y叫做点A的纵坐标,z叫做点A的竖坐标.例1设且是空间的一个基底,给出下列向量组②③④,其中可以作为空间的基底的向量组有()A.1个B.2个C.3个D.4个分析:能否作为空间的基底,即是判断给出的向量组中的三个下向量是否共面,由于是不共面的向量,所以可以构造一个平行六面体直观判断A1AD1C1B1DCB设,易判断出答案例题讲解:BANCOMQP例2、如图,M,N分别是四面体OABC的边OA,BC的中点,P,Q是MN的三等分点。用向量表示和。变式空间四边形OABC中,M在OA上,OM=3MA,N在BC上,且BN=2NC,设,用向量表示CBMNOA巩固性训练1巩固性训练22.已知O,A,B,C为空间四个点,且向量不构成空间的一个基底,那么O,A,B,C是否共面?共面巩固性训练33.已知平行六面体OABC-O’A’B’C’,点G是侧面BB’C’C的中心,且用表示下列向量:COBC'AO'B'A'G小结:1、选定空间不共面的三个向量作为基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的基本要求;2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论