浙江省丽水市莲都区2022-2023学年八年级数学第二学期期末调研模拟试题含解析_第1页
浙江省丽水市莲都区2022-2023学年八年级数学第二学期期末调研模拟试题含解析_第2页
浙江省丽水市莲都区2022-2023学年八年级数学第二学期期末调研模拟试题含解析_第3页
浙江省丽水市莲都区2022-2023学年八年级数学第二学期期末调研模拟试题含解析_第4页
浙江省丽水市莲都区2022-2023学年八年级数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知一组数据为8,9,10,10,11,则这组数据的众数()A.8 B.9 C.10 D.112.计算:=()(a>0,b>0)A. B. C.2a D.2a3.八年级(6)班一同学感冒发烧住院洽疗,护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是()A.列表法 B.图象法C.解析式法 D.以上三种方法均可4.对于实数x,我们规定表示不大于x的最大整数,例如,,,若,则x的取值可以是()A.40 B.45 C.51 D.565.小明研究二次函数(为常数)性质时有如下结论:①该二次函数图象的顶点始终在平行于x轴的直线上;②该二次函数图象的顶点与x轴的两个交点构成等腰直角三角形;③当时,y随x的增大而增大,则m的取值范围为;④点与点在函数图象上,若,,则.其中正确结论的个数为()A.1 B.2 C.3 D.46.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1007.为了考察甲、乙、丙3种小麦的苗高,分别从中随机各抽取了100株麦苗,测得数据,并计算其方差分别是:S2甲=1.4,S2乙=18.8,S2丙=2.5,则苗高比较整齐的是()A.甲种 B.乙种 C.丙种 D.无法确定8.正方形具有而菱形不一定具有的性质是()A.对角线互相垂直 B.对角线相等 C.对角线互相平分 D.对角相等9.如果一个正多边形的内角和是这个正多边形外角和的2倍,那么这个正多边形是()A.等边三角形 B.正四边形 C.正六边形 D.正八边形10.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.如图,某自动感应门的正上方处装着一个感应器,离地米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生正对门,缓慢走到离门1.2米的地方时(米),感应门自动打开,则_________米.12.若是一个完全平方式,则_________.13.比较大小:32_____23.14.因式分解:a2﹣4=_____.15.某产品出现次品的概率为0.05,任意抽取这种产品400件,那么大约有_____件次品.16.若一元二次方程的两个根分别是矩形的边长,则矩形对角线长为______.17.在中,若,则_____________18.观察式子,,,……,根据你发现的规律可知,第个式子为______.三、解答题(共66分)19.(10分)如图,在正方形中,点分别在和上,.(1)求证:;(2)连接交于点,延长至点,使,连结,试证明四边形是菱形.20.(6分)如图,四边形是正方形,点是上的任意一点,于点,交于点.求证:21.(6分)4月23日是世界读书日,总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读,该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:):3060815044110130146801006080120140758110308192课外阅读时间等级人数38平均数中位数众数8081四、得出结论:①表格中的数据:,,;②用样本中的统计量估计该校学生每周用于课外阅读时间的等级为;③如果该校现有学生400人,估计等级为“”的学生有人;④假设平均阅读一本课外书的时间为320分钟,请你用样本平均数估计该校学生每人一年(按52周计算)平均阅读本课外书.22.(8分)因式分解:.23.(8分)在数学学习中,及时对知识进行归纳和整理是提高学习效率的重要方法,善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,对照图形,把相关知识归纳整理如下:一次函数与方程(组)的关系:(1)一次函数的解析式就是一个二元一次方程;(2)点B的横坐标是方程kx+b=0的解;(3)点C的坐标(x,y)中x,y的值是方程组①的解.一次函数与不等式的关系:(1)函数y=kx+b的函数值y大于0时,自变量x的取值范围就是不等式kx+b>0的解集;(2)函数y=kx+b的函数值y小于0时,自变量x的取值范围就是不等式②的解集.(一)请你根据以上归纳整理的内容在下面的数字序号后写出相应的结论:①;②;(二)如果点B坐标为(2,0),C坐标为(1,3);①直接写出kx+b≥k1x+b1的解集;②求直线BC的函数解析式.24.(8分)如图,经过点A(6,0)的直线y=kx﹣3与直线y=﹣x交于点B,点P从点O出发以每秒1个单位长度的速度向点A匀速运动.(1)求点B的坐标;(2)当△OPB是直角三角形时,求点P运动的时间;(3)当BP平分△OAB的面积时,直线BP与y轴交于点D,求线段BD的长.25.(10分)如图,在△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,点O是EF中点,连结BO井延长到G,且GO=BO,连接EG,FG(1)试求四边形EBFG的形状,说明理由;(2)求证:BD⊥BG(3)当AB=BE=1时,求EF的长,26.(10分)探究与应用:在学习几何时,我们可以通过分离和构造基本图形,将几何“模块”化.例如在相似三角形中,字形是非常重要的基本图形,可以建立如下的“模块”(如图①):.(1)请就图①证明上述“模块”的合理性;(2)请直接利用上述“模块”的结论解决下面两个问题:①如图②,已知点,点在直线上运动,若,求此时点的坐标;②如图③,过点作轴与轴的平行线,交直线于点,求点关于直线的对称点的坐标.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

一组数据中出现次数最多的数据叫作这组数据的众数,据此解答即可得到答案.【详解】解:这组数据中8、9、11各出现一次,10出现两次,因此这组数据的众数是10.故选C.【点睛】本题主要考查了众数的含义.2、C【解析】

根据二次根式的除法法则计算可得.【详解】解:原式,故选C.【点睛】本题主要考查二次根式的乘除法,解题的关键是掌握二次根式的除法运算法则.3、B【解析】

列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.【详解】解:护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是图象法,有利于判断体温的变化情况,故选:B.【点睛】本题主要考查了函数的表示方法,图象法直观地反映函数值随自变量的变化而变化的规律.4、C【解析】

解:根据定义,得∴解得:.故选C.5、D【解析】

根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.【详解】解:二次函数=-(x-m)1+1(m为常数)

①∵顶点坐标为(m,1)且当x=m时,y=1

∴这个函数图象的顶点始终在直线y=1上

故结论①正确;

②令y=0,得-(x-m)1+1=0解得:x=m-1,x=m+1∴抛物线与x轴的两个交点坐标为A(m-1,0),B(m+1,0)则AB=1∵顶点P坐标为(m,1)

∴PA=PB=,

∴∴是等腰直角三角形∴函数图象的顶点与x轴的两个交点构成等腰直角三角形

故结论②正确;③当-1<x<1时,y随x的增大而增大,且-1<0

∴m的取值范围为m≥1.故结论③正确;

④∵x1+x1>1m

∴>m

∵二次函数y=-(x-m)1+1(m为常数)的对称轴为直线x=m

∴点A离对称轴的距离小于点B离对称轴的距离

∵x1<x1,且-1<0

∴y1>y1故结论④正确.

故选:D.【点睛】本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题.6、A【解析】

利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)2=100,故选A.【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.7、A【解析】

根据方差反映了数据的波动状况,即可确定答案.【详解】解:观察数据可知甲小麦苗的方差小,故甲小麦长势比较整齐.故选A.【点睛】本题解题的关键是灵活应用方差的意义,这需要平常学习时,关注基础知识.8、B【解析】

根据正方形的性质以及菱形的性质逐项进行分析即可得答案.【详解】菱形的性质有①菱形的对边互相平行,且四条边都相等,②菱形的对角相等,邻角互补,③菱形的对角线分别平分且垂直,并且每条对角线平分一组对角;正方形具有而菱形不一定具有的性质是矩形的特殊性质(①矩形的四个角都是直角,②矩形的对角线相等),A.菱形和正方形的对角线都互相垂直,故本选项错误;B.菱形的对角线不一定相等,正方形的对角线一定相等,故本选项正确;C.菱形和正方形的对角线互相平分,故本选项错误;D.菱形和正方形的对角都相等,故本选项错误,故选B.【点睛】本题考查了正方形与菱形的性质,解题的关键是熟记正方形与菱形的性质定理.9、C【解析】

设这个多边形的边数为n.根据题意列出方程即可解决问题.【详解】设这个多边形的边数为n,由题意(n﹣2)•180°=2×360°,解得n=6,所以这个多边形是正六边形,故选C.【点睛】本题考查多边形的内角和、外角和等知识,解题的关键是学会构建方程解决问题.10、D【解析】

根据题意可知∠ACD=45°,则GF=FC,继而可得EG=DF,由此可判断①;由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,继而有∠AEH+∠ADH=180°,由此可判断②;同②证明△EHF≌△DHC,可判断③;若AE:AB=2:3,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过点H作HM⊥CD于点M,设HM=x,则DM=5x,DH=,CD=6x,根据三角形面积公式即可判断④.【详解】①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF-GF,DF=CD-FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),故③正确;④∵AE:AB=2:3,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则DM=5x,DH==,CD=6x,则S△DHC=×CD×HM=3x2,S△EDH=×DH2=13x2,∴3S△EDH=13S△DHC,故④正确,所以正确的有4个,故选D.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积的计算等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.二、填空题(每小题3分,共24分)11、1.1【解析】

过点D作DE⊥AB于点E,构造Rt△ADE,利用勾股定理求得AD的长度即可.【详解】解:如图,过点D作DE⊥AB于点E,依题意知,BE=CD=1.6米,ED=BC=1.2米,AB=2.1米,则AE=AB−BE=2.1−1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD==1.1(米)故答案是:1.1.【点睛】本题考查了勾股定理的应用,解题的关键是作出辅助线,构造直角三角形,利用勾股定理求得线段AD的长度.12、【解析】

利用完全平方公式的结构特征确定出k的值即可【详解】解:∵是完全平方式,

∴k=±30,

故答案为.【点睛】本题考查了完全平方式,熟练掌握完全平方的特点是解决本题的关键.13、>【解析】

先计算乘方,再根据有理数的大小比较的方法进行比较即可.【详解】∵32=9,23=8,9>8,∴32>23.故答案为>.【点睛】本题考查了有理数大小比较,同号有理数比较大小的方法:都是正有理数:绝对值大的数大.如果是代数式或者不直观的式子要用以下方法,(1)作差,差大于0,前者大,差小于0,后者大;(2)作商,商大于1,前者大,商小于1,后者大.都是负有理数:绝对值的大的反而小.如果是复杂的式子,则可用作差法或作商法比较.异号有理数比较大小的方法:就只要判断哪个是正哪个是负就行,都是字母:就要分情况讨论14、(a+2)(a﹣2).【解析】试题分析:直接利用平方差公式分解因式a2﹣4=(a+2)(a﹣2).故答案为(a+2)(a﹣2).【考点】因式分解-运用公式法.15、1.【解析】

利用总数×出现次品的概率=次品的数量,进而得出答案.【详解】解:由题意可得:次品数量大约为400×0.05=1.故答案为1.【点睛】本题考查概率的意义,正确把握概率的定义是解题的关键.16、1【解析】

利用因式分解法先求出方程的两个根,再利用勾股定理进行求解即可.【详解】方程x2-14x+48=0,即(x-6)(x-8)=0,则x-6=0或x-8=0,解得:x1=6,x2=8,则矩形的对角线长是:=1,故答案为:1.【点睛】本题考查了矩形的性质,勾股定理,解一元二次方程等知识,熟练掌握相关知识是解题的关键.17、;【解析】

根据在直角三角形中,角所对的边是斜边的一半,即可的BC的长.【详解】根据题意中,若所以可得BC=故答案为1【点睛】本题主要考查在直角三角形中,角所对的边是斜边的一半,这是一个重要的直角三角形的性质,应当熟练掌握.18、【解析】

分别找出分子指数规律和分母指数规律,再结合符号规律即可得出答案.【详解】∵,,,……,∴第n个式子为(−1)n+1•故答案为:(−1)n+1•.【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律三、解答题(共66分)19、(1)见解析;(2)见解析【解析】

(1)根据正方形的性质,可得∠B=∠D=90°,进而证得Rt△ABE≌Rt△ADF即可;(2)由(1)中结论可证得,从而可证垂直平分,再证明垂直平分即可.【详解】解:(1)∵正方形,∴∠B=∠D=90°,AB=AD,又AE=AF,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF.(2)∵,∴,又,为公共边,∴,∴,∴垂直平分,∴,又,∴垂直平分,∴,∴四边形是菱形.【点睛】本题考查了正方形的性质,直角三角形全等的判定和性质,菱形的判定,掌握直角三角形全等的判定和性质以及菱形的判定是解题的关键.20、见详解.【解析】

结合正方形的性质利用AAS可证,由全等三角形对应边相等的性质易证结论.【详解】证明:四边形ABCD是正方形在和中,【点睛】本题主要考查了全等三角形的判定与性质,灵活的利用正方形的性质及平行线的性质确定全等的条件是解题的关键.21、①5、4、80.5;②;③160;④1.【解析】

①根据已知数据和中位数的概念可得;②由样本中位数和众数、平均数都是B等级可得答案;③利用样本估计总体思想求解可得;④用没有阅读书籍的平均时间乘以一年的周数,再除以阅读每本书所需时间即可得.【详解】①由已知数据知,,第10、11个数据分别为80、81,中位数,故答案为:5、4、80.5;②用样本中的统计量估计该校学生每周用于课外阅读时间的等级为,故答案为:;③估计等级为“”的学生有(人),故答案为:160;④估计该校学生每人一年(按52周计算)平均阅读课外书(本),故答案为:1.【点睛】此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众数)和理解样本和总体的关系是关键.22、【解析】

先提公因式xy,然后再采用公式法进行因式分解.【详解】解:原式=.故答案为:【点睛】本题考查因式分解,因式分解的一般步骤为:先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适;熟练的记牢公式是解决此类题的关键.23、(一);kx+b<1;(二)①x≤1;②y=-3x+2【解析】

(一)①因为C点是两个函数图象的交点,因此C点坐标必为两函数解析式联立所得方程组的解;②函数y=kx+b中,当y<1时,kx+b<1,因此x的取值范围是不等式kx+b<1的解集;(二)①由图可知:在C点左侧时,直线y=kx+b的函数值要大于直线y=k1x+b1的函数值;②利用待定系数法即可求出直线BC的函数解析式.【详解】解:(一)根据题意,可得①;②kx+b<1.故答案为;kx+b<1;(二)如果点B坐标为(2,1),C坐标为(1,3);①kx+b≥k1x+b1的解集是x≤1;②∵直线BC:y=kx+b过点B(2,1),C(1,3),∴,解得,∴直线BC的函数解析式为y=-3x+2.【点睛】此题考查了一次函数与二元一次方程组及一元一次不等式之间的联系,一次函数的性质,待定系数法求一次函数解析式,利用数形结合与方程思想是解答本题的关键.24、(1)点B的坐标(2,-2);(2)当△OPB是直角三角形时,求点P运动的时间为2秒或4秒;(3)当BP平分△OAB的面积时,线段BD的长为2.【解析】

(1)根据点A的坐标,利用待定系数法可求出直线AB的解析式,联立直线AB及OB的解析式成方程组,通过解方程组可求出点B的坐标;

(2)由∠BOP=45°可得出∠OPB=90°或∠OBP=90°,①当∠OPB=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间;②当∠OBP=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间.综上,此问得解;

(3)由BP平分△OAB的面积可得出OP=AP,进而可得出点P的坐标,根据点B,P的坐标,利用待定系数法可求出直线BP的解析式,利用一次函数图象上点的坐标特征可求出点D的坐标,过点B作BE⊥y轴于点E,利用勾股定理即可求出BD的长.【详解】(1)直线y=kx﹣3过点A(1,0),所以,0=1k-3,解得:k=,直线AB为:-3,,解得:,所以,点B的坐标(2,-2)(2)∵∠BOP=45°,△OPB是直角三角形,

∴∠OPB=90°或∠OBP=90°,如图1所示:

①当∠OPB=90°时,△OPB为等腰直角三角形,

∴OP=BP=2,

又∵点P从点O出发以每秒1个单位长度的速度向点A匀速运动,

∴此时点P的运动时间为2秒;

②当∠OBP=90°时,△OPB为等腰直角三角形,

∴OP=2BP=4,

又∵点P从点O出发以每秒1个单位长度的速度向点A匀速运动,

∴此时点P的运动时间为4秒.

综上,当△OPB是直角三角形时,点P的运动时间为2秒或4秒.

(3)∵BP平分△OAB的面积,

∴S△OBP=S△ABP,

∴OP=AP,

∴点P的坐标为(3,0).

设直线BP的解析式为y=ax+b(a≠0),

将B(2,-2),点P(3,0)代入y=ax+b,得:,

解得:,

∴直线BP的解析式为y=2x-1.

当x=0时,y=2x-1=-1,

∴点D的坐标为(0,-1).

过点B作BE⊥y轴于点E,如图2所示.

∵点B的坐标为(2,-2),点D的坐标为(0,-1),

∴BE=2,CE=4,

∴BD==2,

∴当BP平分△OAB的面积时,线段BD的长为2.【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、等腰直角三角形、三角形的面积以及勾股定理,解题的关键是:(1)联立直线AB及OB的解析式成方程组,通过解方程组求出点B的坐标;(2)分∠OPB=90°和∠OBP=90°两种情况,利用等腰直角三角形的性质求出点P的运动时间;(3)根据点的坐标,利用待定系数法求出直线BP的解析式.25、(1)四边形EBFG是矩形;(2)证明见解析;(3).【解析】

(1)根据对角线互相平分的四边形平行四边形可得四边形EBFG是平行四边形,再由∠CBF=90°,即可判断▱EBFG是矩形.(2)由直角三角形斜边中线等于斜边一半可知BD=CD,OB=OE,即可得∠C=∠CBD,∠OEB=∠OBE,由∠FDC=90°即可得∠DBG=90°;(3)连接AE,由AB=BE=1勾股定理易求AE=,结合已知易证△ABC≌△EBF,得BF=BC=1+再由勾股定理即可求出EF=.【详解】解:(1)结论:四边形EBFG是矩形.理由:∵OE=OF,OB=OG

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论