版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在正方形中,点是边上的一个动点(不与点,重合),的垂直平分线分别交,于点,若,则的值为()A. B. C. D.2.如图,点、、、分别是四边形边、、、的中点,则下列说法:①若,则四边形为矩形;②若,则四边形为菱形;③若四边形是平行四边形,则与互相垂直平分;④若四边形是正方形,则与互相垂直且相等.其中正确的个数是()A.1 B.2 C.3 D.43.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为()A.6 B.7 C.2 D.24.一个多边形的内角和是1800°,则这个多边形是()边形.A.9 B.10 C.11 D.125.下列说法中错误的是()A.四边相等的四边形是菱形 B.菱形的对角线长度等于边长C.一组邻边相等的平行四边形是菱形 D.对角线互相垂直平分的四边形是菱形6.在数轴上用点B表示实数b.若关于x的一元二次方程x2+bx+1=0有两个相等的实数根,则()A. B. C. D.7.若点P(1-m,-3)在第三象限,则m的取值范围是()A.m<1 B.m<0 C.m>0 D.m>18.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A. B.1,C.6,7,8 D.2,3,49.甲、乙两名运动员10次比赛成绩如表,S12,S22分别表示他们测试成绩的方差,则有()8分9分10分甲(频数)424乙(频数)343A.S12>S22 B.S12=S22 C.S12<S22 D.无法确定10.不等式组12(x+2)-3>0x>m的解集是x>4A.m≤4 B.m<4 C.m≥4 D.m>4二、填空题(每小题3分,共24分)11.某超市促销活动,将三种水果采用甲、乙、丙三种方式搭配装进礼盒进行销售.每盒的总成本为盒中三种水果成本之和,盒子成本忽略不计.甲种方式每盒分别装三种水果;乙种方式每盒分别装三种水果.甲每盒的总成本是每千克水果成本的倍,每盒甲的销售利润率为;每盒甲比每盒乙的售价低;每盒丙在成本上提高标价后打八折出售,获利为每千克水果成本的倍.当销售甲、乙、丙三种方式搭配的礼盒数量之比为时,则销售总利润率为__________.12.有一组数据:2,5,5,6,7,这组数据的平均数为_____.13.一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1小时后,它们相距______________海里.14.如果a+b=8,a﹣b=﹣5,则a2﹣b2的值为_____.15.已知函数y1=k1x+b1与函数y2=k2x+b2的图象如图所示,则不等式k1x+b1<k2x+b2的解集是.16.已知一组数据3、x、4、5、6的众数是6,则x的值是_____.17.若有意义,则x的取值范围是____.18.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD其中正确结论的为______(请将所有正确的序号都填上).三、解答题(共66分)19.(10分)如图,在矩形中,对角线、交于点,且过点作,过点作,两直线相交于点.(1)求证:四边形是菱形;(2)若,求矩形的面积.20.(6分)为了满足市场需求,某厂家生产A、B两种款式的环保购物袋,每天共生产5000个,两种购物袋的成本和售价如下表:成本(元/个)售价(元/个)22.433.6设每天生产A种购物袋x个,每天共获利y元.(1)求y与x的函数解析式;(2)如果该厂每天最多投入成本12000元,那么每天最多获利多少元?21.(6分)对于给定的两个“函数,任取自变量x的一个值,当x<1时,它们对应的函数值互为相反数;当x≥1时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x-4,它的相关函数为.(1)一次函数y=-x+5的相关函数为______________.(2)已知点A(b-1,4),点B坐标(b+3,4),函数y=3x-2的相关函数与线段AB有且只有一个交点,求b的取值范围.(3)当b+1≤x≤b+2时,函数y=-3x+b-2的相关函数的最小值为3,求b的值.22.(8分)我国是世界上严重缺水的国家之一,2011年春季以来,我省遭受了严重的旱情,某校为了组织“节约用水从我做起”活动,随机调查了本校120名同学家庭月人均用水量和节水措施情况,如图1、图2是根据调查结果做出的统计图的一部分.请根据信息解答下列问题:(1)图1中淘米水浇花所占的百分比为;(2)图1中安装节水设备所在的扇形的圆心角度数为;(3)补全图2;(4)如果全校学生家庭总人数为3000人,根据这120名同学家庭月人均用水量,估计全校学生家庭月用水总量是多少吨?23.(8分)如图(1),在平面直角坐标系中,直线y=-x+m交y轴于点A,交x轴于点B,点C为OB的中点,作C关于直线AB的对称点F,连接BF和OF,OF交AC于点E,交AB于点M.(1)直接写出点F的坐标(用m表示);(2)求证:OF⊥AC;(3)如图(2),若m=2,点G的坐标为(-,0),过G点的直线GP:y=kx+b(k≠0)与直线AB始终相交于第一象限;①求k的取值范围;②如图(3),若直线GP经过点M,过点M作GM的垂线交FB的延长线于点D,在平面内是否存在点Q,使四边形DMGQ为正方形?如果存在,请求出Q点坐标;如果不存在,请说明理由.24.(8分)某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.25.(10分)某书店以每本21元的价格购进一批图书,若每本图书售价a元,则每周可卖出(350﹣10a)件,但物价局限定每本图书的利润率不得超过20%,该书店计划“五一”黄金周要盈利400元.问需要购进图书多少本?26.(10分)在数学兴趣小组活动中,小明进行数学探究活动.将大小不相同的正方形ABCD与正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明;(2)如图2,小明将正方形ABCD绕点A转动,当点B恰好落在线段DG上时①猜想线段DG和BE的位置关系是.②若AD=2,AE=,求△ADG的面积.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
连接AF,EF,设DF=a,CF=6a,由勾股定理可求AF、EC的长,即可求出BE:EC的值.【详解】连接AF,EF,设DF=a,CF=6a,则BC=CD=7a,∴AF=,∵GF垂直平分AE,∴EF=AF=,∴EC==,∴BE=7a-,∴BE:CE=.故选C.【点睛】本题考查了正方形的性质,勾股定理,利用勾股定理表示出相关线段的长是解答本题的关键.2、A【解析】
根据三角形中位线定理、平行四边形的判定定理得到四边形EFGH是平行四边形,根据矩形、菱形、正方形的判定定理判断即可.【详解】解:∵E、F分别是边AB、BC的中点,
∴EF∥AC,EF=AC,
同理可知,HG∥AC,HG=AC,
∴EF∥HG,EF=HG,
∴四边形EFGH是平行四边形,若AC=BD,则四边形EFGH是菱形,故①说法错误;
若AC⊥BD,则四边形EFGH是矩形,故②说法错误;若四边形是平行四边形,AC与BD不一定互相垂直平分,故③说法错误;若四边形是正方形,AC与BD互相垂直且相等,故④说法正确;故选:A.【点睛】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,掌握三角形中位线定理、平行四边形、矩形、菱形、正方形的判定定理是解题的关键.3、A【解析】
根据题意画出图形,利用勾股定理解答即可.【详解】如图,设AC=b,BC=a,分别在直角△ACE与直角△BCD中,根据勾股定理得到:,两式相加得:a2+b2=31,根据勾股定理得到斜边==1.故选A.【点睛】本题是根据勾股定理,把求直角三角形的斜边长的问题转化为求两直角边的平方和的问题.4、D【解析】
根据n边形的内角和是(n﹣2)×180,根据多边形的内角和为1800,就得到一个关于n的方程,从而求出边数.【详解】根据题意得:(n﹣2)×180=1800,解得:n=1.故选:D.【点睛】此题主要考查多边形的内角和,解题的关键是熟知n边形的内角和是(n﹣2)×180.5、B【解析】
由菱形的判定和性质可判断各个选项.【详解】解:∵四边相等的四边形是菱形∴A选项正确∵菱形的对角线长度不一定等于边长,∴B选项错误∵一组邻边相等的平行四边形是菱形∴C选项正确∵对角线互相垂直平分的四边形是菱形∴选项D正确故选:B.【点睛】本题考查了菱形的判定与性质,熟练运用菱形的判定和性质解决问题是本题的关键.6、A【解析】
根据方程有两个相等的实数根,得到根的判别式的值等于0,即可求出b的值.【详解】根据题意知△=b1-4=0,解得:b=±1(负值舍去),则OB=1.故选:A.【点睛】本题考查了一元二次方程ax1+bx+c=0(a≠0)的根的判别式△=b1-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7、D【解析】
根据第三象限内点的横坐标是负数列不等式求解即可.【详解】解:∵点P(1−m,−3)在第三象限,∴1−m<0,解得m>1.故选D.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).8、B【解析】试题解析:A.()2+()2≠()2,故该选项错误;B.12+()2=()2,故该选项正确;C.62+72≠82,故该选项错误;D.22+32≠42,故该选项错误.故选B.考点:勾股定理.9、A【解析】
根据题意以及图表所示,先求出甲和乙成绩的平均数,然后运用方差公式即可做出选择.【详解】由表可知,甲的成绩平均数为,乙的成绩的平均数为,所以甲的成绩的方差为,乙的方差为,所以>.故本题选择A.【点睛】本题主要考查方差公式的运用,根据图中数据,掌握方差公式即可求解.10、A【解析】
求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,结合不等式组的解集即可得答案.【详解】解不等式12(x+2)﹣3>0,得:x>4由不等式组的解集为x>4知m≤4,故选A.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键二、填空题(每小题3分,共24分)11、20%.【解析】
分别设每千克A、B、C三种水果的成本为x、y、z,设丙每盒成本为m,然后根据题意将甲、乙、丙三种方式的每盒成本和利润用x表示出来即可求解.【详解】设每千克A、B、C三种水果的成本分别为为x、y、z,依题意得:
6x+3y+z=12.5x,
∴3y+z=6.5x,
∴每盒甲的销售利润=12.5x•20%=2.5x
乙种方式每盒成本=2x+6y+2z=2x+13x=15x,
乙种方式每盒售价=12.5x•(1+20%)÷(1-25%)=20x,
∴每盒乙的销售利润=20x-15x=5x,
设丙每盒成本为m,依题意得:m(1+40%)•0.8-m=1.2x,
解得m=10x.
∴当销售甲、乙、丙三种方式的水果数量之比为2:2:5时,
总成本为:12.5x•2+15x•2+10x•5=105x,
总利润为:2.5x•2+5x×2+1.2x•5=21x,
销售的总利润率为×100%=20%,
故答案为:20%.【点睛】此题考查了三元一次方程的实际应用,分析题意,找到关键描述语,找到合适的等量关系是解题的关键.12、1.【解析】
把给出的这1个数据加起来,再除以数据个数1,就是此组数据的平均数.【详解】解:(2+1+1+6+7)÷1=21÷1=1.答:这组数据的平均数是1.故答案为:1.【点睛】此题主要考查了平均数的意义与求解方法,关键是把给出的这1个数据加起来,再除以数据个数1.13、20【解析】
根据题意画出图形,根据题目中AB、AC的夹角可知它为直角三角形,然后根据勾股定理解答.【详解】如图,∵由图可知AC=16×1=16(海里),
AB=12×1=12(海里),
在Rt△ABC中,BC==20(海里).
故它们相距20海里.
故答案为:20【点睛】本题考查的是勾股定理,正确的掌握方位角的概念,从题意中得出△ABC为直角三角形是关键.14、-1【解析】
根据平方差公式求出即可.【详解】解:∵a+b=8,a﹣b=﹣5,∴a2﹣b2=(a+b)(a﹣b)),=8×(﹣5),=﹣1,故答案为:﹣1.【点睛】本题主要考查了乘法公式的应用,准确应用平方差公式和完全平方公式是解题的关键.15、x<1【解析】
利用函数图象,写出函数y1=k1x+b1的图象在函数y2=k2x+b2的图象下方所对应的自变量的范围即可.【详解】解:根据图象得,当x<1时,y1<y2,即k1x+b1<k2x+b2;故答案为:x<1【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16、1【解析】
根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【详解】这组数据中的众数是1,即出现次数最多的数据为:1.故x=1.故答案为1.【点睛】本题考查了众数的知识,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.17、x≥1.【解析】
直接利用二次根式有意义的条件进而分析得出答案.【详解】∵有意义,∴x≥1,故答案为:x≥1.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.18、①③④【解析】
根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.【详解】解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=4AG,故③说法正确,故答案为①③④.考点:菱形的判定;等边三角形的性质;含30度角的直角三角形.三、解答题(共66分)19、(1)见解析;(2)矩形的面积.【解析】
(1)根据邻边相等的平行四边形是菱形即可判断;(2)利用勾股定理求出的长即可解决问题.【详解】(1)证明:∵,,∴四边形是平行四边形,∵四边形是矩形,∴,∴四边形是菱形;(2)∵四边形是菱形∴,四边形是矩形,,,∴,∴∴矩形的面积.【点睛】本题考查矩形的性质、菱形的判定、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、(1);(2)2400元.【解析】
(1)根据题意可得A种塑料袋每天获利(2.4-2)x,B种塑料袋每天获利(3.6-3)(5000-x),共获利y元,列出y与x的函数关系式:y=(2.4-2)x+(3.6-3)(5000-x).(2)根据题意得2x+3(4500-x)≤10000,解出x的范围.得出y随x增大而减小.【详解】(1)由题意得:=(2)由题意得:≤12000解得:≥3000在函数中,<0∴随的增大而减小∴当=3000时,每天可获利最多,最大利润=2400∴该厂每天最多获利2400元.【点睛】此题主要考查了一次函数的应用以及不等式组解法,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.21、(1);(2)当x<1时,≤b≤;当x≥1时,≤b≤;(3)当x<1时,b=-1;当x≥1时,b=-【解析】
(1)根据相关函数的概念可直接得出答案;(2)由A(b-1,4),B(b+3,4)得到线段AB在直线y=4上,再求出y=3x-2的两个相关函数的图象与直线y=4的交点坐标,从而得到不等式,解不等式即可得出b的取值范围.(3)分两种情况,当x<1时,y=-3x+b-2的相关函数是y=3x+2-b,根据一次函数的性质得到当x=b+1时,y有最小值为3,列出方程求解即可得出b值;同理,当x≥1时,y=-3x+b-2的相关函数是y=-3x+b-2,由函数性质列出方程可得出b值.【详解】解:(1)根据相关函数的概念可得,一次函数y=-x+5的相关函数为;(2)∵A(b-1,4),B(b+3,4),∴线段AB在直线y=4上,且点A在点B的左边,当x<1时,y=3x-2的相关函数是y=2-3x,把y=4代入y=2-3x,得2-3x=4,解得x=-∴直线y=4与直线y=2-3x的交点的横坐标是x=-,∴b-1≤-≤b+3解得≤b≤当x≥1时,y=3x-2的相关函数是y=3x-2,把y=4代入y=3x-2,得3x-2=4,解得x=2∴直线y=4与直线y=3x-2的交点的横坐标是x=2,∴b-1≤2≤b+3解得≤b≤综上所述,当x<1时,≤b≤;当x≥1时,≤b≤.(3)当x<1时,y=-3x+b-2的相关函数是y=3x+2-b,∵k=3>0,y随x的增大而增大,∵b+1≤x≤b+2∴当x=b+1时,y有最小值为3∴3(b+1)+2-b=3解得b=-1;当x≥1时,y=-3x+b-2的相关函数是y=-3x+b-2,∵k=-3<0,y随x的增大而减小,∵b+1≤x≤b+2∴当x=b+2时,y有最小值为3∴-3(b+2)+b-2=3解得b=-综上,当x<1时,b=-1;当x≥1时,b=-.【点睛】本题考查了一次函数和它的相关函数,理解相关函数的概念是解题的关键,本题也考查了一元一次不等式.22、【解】(1)15﹪;(2)108°;(3)见解析;(4)全校学生家庭月用水总量是9600吨【解析】
(1)根据扇形统计图的特点可知,用1减去其他3种节水措施所占的百分比即可解答.
(2)用安装节水设备所在的扇形的百分比乘360度,即可得出正确答案.
(3)根据随机调查了本校120名同学家庭可知总数为120,减去其他4组的户数得出答案,再画图即可解答.
(4)先求出这120名同学家庭月人均用水量,再用样本估计总体的方法即可解答.【详解】(1)淘米水浇花所占的百分比为1-30%-44%-11%=15%.
(2)安装节水设备所在的扇形的圆心角度数为360°×30%=108°.
(3)如图
(4)(1×10+2×42+3×20+4×32+5×16)÷120×3000
=9100吨.
即全校学生家庭月用水总量是9100吨.【点睛】考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、(1)(m,m)(2)见解析(3)①0<k<6②(,-)【解析】
(1)CF⊥AB,CR=FR,则∠RCB=45°,则RC=RB=RF,∠RBF=45°,即FB⊥x轴,即可求解;(2)证明△AOC≌△OBF(HL),即可求解;(3)①将点(-,0)代入y=kx+b即可求解;②求出点D(2,-1),证明△MNG≌△MHD(HL),即可求解.【详解】解:(1)y=-x+m,令x=0,则y=m,令y=0,则x=m,则∠ABO=45°,故点A、B的坐标分别为:(0,m)、(m,0),则点C(m,0),如图(1)作点C的对称轴F交AB于点R,则CF⊥AB,CR=FR,则∠RCB=45°,则RC=RB=RF,∴∠RBF=45°,即FB⊥x轴,故点F(m,m);(2)∵OC=BF=m,OB=OA,∴△AOC≌△OBF(HL),∴∠OAC=∠FOB,∵∠OAC+∠AOE=90°,∴∠OAC+∠AOE=90°,∴∠AEO=90°,∴OF⊥AC;(3)①将点(-,0)代入y=kx+b得:,解得:,由一次函数图象知:k>0,∵交点在第一象限,则,解得:0<k<6;②存在,理由:直线OF的表达式为:y=x,直线AB的表达式为:y=-x+2,联立上述两个表达式并解得:x=,故点M(,),直线GM所在函数表达式中的k值为:,则直线MD所在直线函数表达式中的k值为-,将点M坐标和直线DM表达式中的k值代入一次函数表达式并解得:直线DM的表达式为:y=-x+4,故点D(2,-1),过点M作x轴的垂线于点N,作x轴的平行线交过点G于y轴的平行线于点S,过点G作y轴的平行线交过点Q与x轴的平行线于点T,则,∴△MNG≌△MHD(HL),∴MD=MG,则△GTQ≌△MSG,则GT=MS=GN=,TQ=SG=MN=,故点Q(,-).【点睛】本题考查的是一次函数综合运用,涉及到待定系数法求一次函数解析式,一次函数图像的交点,全等三角形的判定与性质、点的对称性,其中(3)②,证明△MNG≌△MHD(HL),是本题的难点.24、见解析【解析】
由三个娱乐项目所处位置到售票中心的距离相等,可得售票中心是海盗船、摩天轮、碰碰车三个娱乐场组成三角形的三边的垂直平分线的交点.【详解】如图,①连接AB,AC,②分别作线段AB,AC的垂直平分线,两垂直平分线相较于点P,则P即为售票中心.【点睛】此题考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44762-2024氯化镧
- 2024年度工程建设项目电梯设备采购及安装合同3篇
- 《厂用电保护讲义》课件
- 04版特许经营协议包含加盟店管理细节
- 《食品营养小知识》课件
- 《n小脑间脑》课件
- 《供应商审核讲义》课件
- 2024年度房地产销售代理合同-关于某房地产项目销售代理的详细合同2篇
- 2024年度环保项目投资与建设技术服务合同
- 篮球课基础教案教育课件
- 国电南自-ps6000工程设计
- 初中语文人教八年级上册《八下单元复习教学设计》PPT
- 骨科常见周围神经卡压综合征课件
- 部编版六年级上册第五单元写作《写感受最深的人或事》课件
- 润滑基础知识培训讲座
- 五年级上册语文课件- 鸟的天堂 人教部编版(共39张PPT)
- 儿科先天性心脏病见习教案
- 《生物力学》配套教学课件
- 保密管理-公司脱离涉密岗位人员物品移交清单
- 中国新生儿复苏指南解读(2021修订)
- 六年级上册音乐教案 第六单元《手拉手》《巴塞罗那》《意大利之夏》人教新课标(2014秋)
评论
0/150
提交评论