版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年江苏省盐城市海丰镇中学高三数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,函数在上单调递减.则的取值范围是(
)
A.
B.
C.
D.参考答案:A2.如图,为等腰直角三角形,,为斜边的高,点在射线上,则的最小值为A.
B.C.
D.参考答案:B3.设实数满足约束条件则目标函数的取值范围是()A.
B.
C.
D.参考答案:D4.某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往地至少72吨的货物,派用的每辆车需满载且只运送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,该公司合理计划当天派用两类卡车的车辆数,可得最大利润为A.4650元
B.4700元
C.4900元
D.5000元参考答案:C5.在四面体ABCD中,△BCD与△ACD均是边长为4的等边三角形,二面角A-CD-B的大小为60°,则四面体ABCD外接球的表面积为(
)A. B.
C.
D.参考答案:A根据题意得到这个模型是两个全等的三角形,二面角大小为,取CD的中点记为O,连结OB,OA,根据题意需要找到外接球的球心,选择OA的离O点近的3等分店记为E,同理去OB上一点记为F,自这两点分别做两个面的垂线,交于点P,则点P就是球心。在三角形POE中,角POE为三十度,OE=故答案为:A.
6.《算法统宗》是中国古代数学名著,由程大位所著,其中记载这样一首诗:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?请君布算莫迟疑!其含义为:用九百九十九文钱共买了一千个甜果和苦果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个,请问究竟甜、苦果各有几个?现有如图所示的程序框图,输入分别代表钱数和果子个数,则符合输出值的为(
)A.为甜果数343
B.为苦果数343
C.为甜果数657
D.为苦果数657参考答案:B7.函数y=ln|x﹣1|的图象与函数y=﹣cosπx(﹣2≤x≤4)的图象所有交点的横坐标之和等于(
)A.6 B.5 C.4 D.3参考答案:A【考点】余弦函数的图象.【专题】三角函数的图像与性质.【分析】根据函数的性质对称函数y=ln|x﹣1|的图象与函数y=﹣cosπx(﹣2≤x≤4)的图象关于x=1对称,画出图象判断交点个数,利用对称性整体求解即可.【解答】解:∵y=ln|x|是偶函数,对称轴x=0,∴函数y=ln|x﹣1|的图象的对称轴x=1,∵函数y=﹣cosπx,∴对称轴x=k,k∈z,∴函数y=ln|x﹣1|的图象与函数y=﹣cosπx(﹣2≤x≤4)的图象关于x=1对称,由图知,两个函数图象恰有6个交点,其横坐标分别为x1,x2,x3,与x1′,x2′,x3′,可知:x1+x1′=2,x2=2,x3=2,∴所有交点的横坐标之和等于6故选:A.【点评】本题他考查对数函数与余弦函数的图象与性质,着重考查作图与分析、解决问题的能力,作图是难点,分析结论是关键,属于难题8.直线与曲线相切,则的值为(
)
A.-2
B.-1
C.-
D.1
参考答案:B9.一个几何体的三视图如图所示,则该几何体的外接球的体积为()A. B. C. D.参考答案:B【考点】球的体积和表面积;简单空间图形的三视图.【专题】综合题;转化思想;综合法;立体几何.【分析】三视图复原的几何体是长方体的一个角,扩展为长方体,它的外接球的直径就是长方体的对角线的长,求出对角线长,即可求出外接球的体积.【解答】解:三视图复原的几何体是长方体的一个角;把它扩展为长方体,则长、宽、高分别为1,2,2,则它的外接球的直径就是长方体的对角线的长,所以长方体的对角线长为:=3,所以球的半径为:R=cm.这个几何体的外接球的体积是:πR3=π.故选:B.【点评】本题是基础题,考查几何体的外接球的问题,空间想象能力,逻辑思维能力,和计算能力,注意本题中三棱锥的外接球与长方体的外接球是同一个球.10.对于函数,下列说法正确的是(
)A.
函数图像关于点对称
B函数图像关于直线对称.
C将他的图像向左平移个单位,得到的图像.
D.将他的图像上各点的横坐标缩小为原来的倍,得到的图像参考答案:B【知识点】三角函数图像变换三角函数的图像与性质【试题解析】对A:故A错;
对B:图像关于直线对称,故B正确;
对C:将他的图像向左平移个单位,得到的图像,故C错;
对D:将他的图像上各点的横坐标缩小为原来的倍,的图像,故D错。
故答案为:B二、填空题:本大题共7小题,每小题4分,共28分11.已知定义在R上的可导函数的图象在点处的切线方程为_________.参考答案:【知识点】导数的应用B12【答案解析】1
据题意知f′(1)=-f(1)=-+2=∴f(1)+f′(1)=-+=1
故答案为1【思路点拨】利用函数在切点处的导数就是切线的斜率求出f′(1);将切点坐标代入切线方程求出f(1),求出它们的和.12.已知函数有零点,则的取值范围是
参考答案:
由,解得当时,,函数单调递减;当时,,函数单调递增.故该函数的最小值为因为该函数有零点,所以,即,解得故的取值范围是.13.已知变量满足,目标函数的最小值为5,则c的值为
.参考答案:5如图为满足条件的可行域,由得,当直线过点
时有最小值5,此时
,解得坐标为,代入得.【点睛】利用线性规划求最值,一般用图解法求解,其步骤是:1.在坐标系中作出可行域;2.根据目标函数的几何意义,将目标函数进行变形;3.确定最优解:在可行域内平行移动目标函数变形后的直线,从面确定最优解;4.求最值:将最解代入目标函数即可求最大值与最小值.
14.(理)函数的最大值和最小值分别为,则______.参考答案:略15.已知A、B为双曲线=1(a>0,b>0)的左右顶点,F1,F2为其左右焦点,双曲线的渐近线上一点P(x0,y0)(x0<0,y0>0),满足=0,且∠PBF1=45°,则双曲线的离心率为.参考答案:【考点】KC:双曲线的简单性质.【分析】P在渐近线y=﹣上,根据=0可知OP=c,从而可求出P点坐标,得出PA⊥AB,故PA=AB,从而得出a,b的关系,代入离心率公式计算即可.【解答】解:由题意可知P在渐近线y=﹣上,∴y0=﹣,∵=0,∴PF1⊥PF2,∴OP=F1F2=c,即x02+=c2,∴x02=a2,∴PA⊥x轴,PA=b,∵∠PBF1=45°,∴PA=AB,即2a=b,∴e===.故答案为:.16.设,向量,若,则_______.参考答案:
17.定义在[-2,2]上的奇函数f(x)在(0,2]上的图象如图所示,则不等式f(x)>x的解集为_.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.[选修4-4:坐标系与参数方程](10分)如图,在极坐标系Ox中,,,,,弧,,所在圆的圆心分别是(1,0),,(1,π),曲线M1是弧,曲线M2是弧,曲线M3是弧.(1)分别写出M1,M2,M3的极坐标方程;(2)曲线M由M1,M2,M3构成,若点P在M上,且,求P的极坐标.参考答案:解:(1)由题设可得,弧所在圆的极坐标方程分别为,,.所以的极坐标方程为,的极坐标方程为,的极坐标方程为.(2)设,由题设及(1)知若,则,解得;若,则,解得或;若,则,解得.综上,P的极坐标为或或或.
19.(本小题满分12分)
设函数(Ⅰ)若时函数有三个互不相同的零点,求的范围;(Ⅱ)若函数在内没有极值点,求的范围;参考答案:20.如图,四棱锥PABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.参考答案:(1)证明由已知得AM=AD=2.取BP的中点T,连接AT,TN,由N为PC中点知TN∥BC,TN=BC=2.又AD∥BC,故TN綊AM,四边形AMNT为平行四边形,于是MN∥AT.因为AT?平面PAB,MN?平面PAB,所以MN∥平面PAB.(2)解取BC的中点E,连接AE.由AB=AC得AE⊥BC,从而AE⊥AD,.以A为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Axyz.由题意知,P(0,0,4),M(0,2,0),C(,2,0),N,=(0,2,-4),=,=.设n=(x,y,z)为平面PMN的法向量,则即可取n=(0,2,1).于是|cos〈n,〉|==.设AN与平面PMN所成的角为θ,则sinθ=,∴直线AN与平面PMN所成角的正弦值为.
21.已知函数(1)解不等式.(2)若对任意的x1R,都有x2R,使得f(x1)=g(x2)成立,求实数a的取值范围.参考答案:(1)由||x﹣1|+2|<5,得﹣5<|x﹣1|+2<5∴﹣7<|x﹣1|<3,得不等式的解为﹣2<x<4(2)因为任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,所以{y|y=f(x)}?{y|y=g(x)},又f(x)=|2x﹣a|+|2x+3|≥|(2x﹣a)﹣(2x+3)|=|a+3|,g(x)=|x﹣1|+2≥2,所以|a+3|≥2,解得a≥﹣1或a≤﹣5,所以实数a的取值范围为a≥﹣1或a≤﹣5.22.已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4,该椭圆的离心率为,以M(﹣3,2)为圆心,r为半径的圆与椭圆C交于A,B两点.(1)求椭圆C的方程;(2)若A,B两点关于原点对称,求圆M的方程;(3)若点A的坐标为(0,2),求△ABM的面积.参考答案:【考点】椭圆的简单性质.【专题】综合题;方程思想;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】(1)由题意求出a=2,结合椭圆离心率求得c,再由隐含条件求得b,则椭圆C的方程可求;(2)由A,B两点关于原点对称,可知O是AB的中点,结合垂径定理可知MO⊥AB,进一步得到直线MO的斜率,得到直线AB的斜率,则直线AB的方程可求,联立直线方程和椭圆方程,求出A的坐标由勾股定理得圆的半径,则圆M的方程可求;(3)由题意知直线AB的斜率存在,设直线AB的方程为y=kx+2,联立直线方程和椭圆方程,化为关于x的一元二次方程,求得B的坐标,进一步得线段AB的中点E的坐标,求得直线ME的斜率,结合题意列式求得AB的斜率,得到直线AB的方程为y=x+2,求出|AB|,由点到直线的距离公式求得点M到直线AB的距离,代入△ABM的面积公式得答案.【解答】解:(1)由题意可知2a=4,即a=2,又,则,∴b2=,即椭圆C的方程为;(2)∵A,B两点关于原点对称,∴O是AB的中点,由垂径定理可知MO⊥AB,又M(﹣3,2),∴直线MO的斜率为﹣,故直线AB的斜率为,则直线AB的方程为y=x,联立,解得,由勾股定理得r2=MA2=MO2+OA2=9+4+,∴圆M的方程为(x+3)2+(y﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论