2023年山东省东营市部分学校数学八下期末教学质量检测试题含解析_第1页
2023年山东省东营市部分学校数学八下期末教学质量检测试题含解析_第2页
2023年山东省东营市部分学校数学八下期末教学质量检测试题含解析_第3页
2023年山东省东营市部分学校数学八下期末教学质量检测试题含解析_第4页
2023年山东省东营市部分学校数学八下期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.若一个多边形每一个内角都是135º,则这个多边形的边数是()A.6 B.8 C.10 D.122.如图,长宽高分别为3,2,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面亮到现点B,则它爬行的最短路程是()A. B.2 C.3 D.53.关于的一元二次方程的一个根为0,则的值是()A. B.3 C.或1 D.3或4.已知一个多边形的内角和等于900º,则这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形5.函数中,自变量x的取值范围是()A. B. C. D.x为任意实数6.如图,将一个矩形纸片ABCD,沿着BE折叠,使C、D两点分别落在点、处若,则的度数为A. B. C. D.7.已知a是方程x2-3x-1=0的一个根,则代数式A.6 B.5 C.12+213 D.8.等腰三角形的底角是70°,则顶角为()A. B. C. D.9.在平面直角坐标系中,矩形的顶点,,的坐标分别为,,,则顶点的坐标是A. B. C. D.10.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D.5二、填空题(每小题3分,共24分)11.长方形的周长为,其中一边长为,面积为,则与的关系可表示为___.12.若ab=﹣2,a+b=1,则代数式a2b+ab2的值等于_____.13.已知一元二次方程x2-6x+a=0有一个根为2,则另一根为_______.14.在结束了初中阶段数学内容的新课教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制了如图所示的扇形统计图,则唐老师安排复习“统计与概率”内容的时间为______课时.15.如果一组数据1,3,5,,8的方差是0.7,则另一组数据11,13,15,,18的方差是________.16.若直角三角形斜边上的高和中线分别是5cm和6cm,则面积为________,17.已知一组数据:0,2,x,4,5,这组数据的众数是4,那么这组数据的平均数是_____.18.一次函数的图象如图所示,当时,的取值范围是_______.三、解答题(共66分)19.(10分)与位似,且,画出位似中心,并写出与的位似比.20.(6分)已知,在平面直角坐标系中,直线经过点和点.(1)求直线所对应的函数表达式.(2)若点在直线上,求的值.21.(6分)(1)因式分解:4m2-9n2;(2)先化简,再求值:,其中x=222.(8分)某科技公司研发出一款多型号的智能手表,一家代理商出售该公司的A型智能手表,去年销售总额为8000元,今年A型智能手表的售价每只比去年降了60元,若售出的数量与去年相同,销售总额将比去年减少25%.(1)请问今年A型智能手表每只售价多少元?(2)今年这家代理商准备新进一批A型智能手表和B型智能手表共100只,它们的进货价与销售价格如下表,若B型智能手表进货量不超过A型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?

A型智能手表

B型智能手表

进价

130元/只

150元/只

售价

今年的售价

230元/只

23.(8分)某小区要在面积为128平方米的正方形空地上建造一个休闲园地,并进行规划(如图):在休闲园地内建一个面积为72平方米的正方形儿童游乐场,游乐场两边铺设健身道,剩下的区域作为休息区.现在计划在休息区内摆放占地面积为31.5平方米“背靠背”休闲椅(如图),并要求休闲椅摆放在东西方向上或南北方向上,请通过计算说明休息区内最多能摆放几张这样的休闲椅.24.(8分)某商场欲购进果汁饮料和碳酸饮料共60箱,两种饮料每箱的进价和售价如下表所示。设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价-总进价)。(1)设商场购进碳酸饮料y箱,直接写出y与x的函数解析式;(2)求总利润w关于x的函数解析式;(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润。饮料果汁饮料碳酸饮料进价(元/箱)4025售价(元/箱)523225.(10分)下面是小明设计的“作矩形ABCD”的尺规作图过程:已知:在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.作法:如图①以点B为圆心,AC长为半径作弧;②以点C为圆心,AB长为半径作弧;③两弧交于点D,A,D在BC同侧;④连接AD,CD.所以四边形ABCD是矩形,根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:链接BD.∵AB=________,AC=__________,BC=BC∴ΔABC≌ΔDCB∴∠ABC=∠DCB=90°∴AB∥CD.∴四边形ABCD是平行四边形∵∠ABC=90°∴四边形ABCD是矩形.(_______________)(填推理的依据)26.(10分)九年一班竞选班长时,规定:思想表现、学习成绩、工作能力三个方面的重要性之比为3:3:1.请根据下表信息,确定谁会被聘选为班长:小明小英思想表现9198学习成绩9696工作能力9891

参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:设多边形的边数为n,则=135,解得:n=8考点:多边形的内角.2、C【解析】

将长方形的盒子按不同方式展开,得到不同的矩形,求出不同矩形的对角线,最短者即为正确答案.【详解】解:将长方形的盒子按不同方式展开,得到不同的矩形,对角线长分别为:∴从点A出发沿着长方体的表面爬行到达点B的最短路程是3.故选C.【点睛】本题主要考查了两点之间线段最短,解答时根据实际情况进行分类讨论,灵活运用勾股定理是解题的关键.3、B【解析】

根据一元二次方程的解的定义,将x=0代入关于x的一元二次方程,列出关于a的一元一次方程,通过解方程即可求得a的值.【详解】根据题意知,x=0是关于x的一元二次方程的根∴a2-2a-3=0,解得,a=3或a=-1又∵a2-1≠0,∴.a≠±1.∴.a=3.故选:B.【点睛】本题考查了一元二次方程的解的定义,一元二次方程的解使方程的左右两边相等.4、C【解析】试题分析:多边形的内角和公式为(n-2)×180°,根据题意可得:(n-2)×180°=900°,解得:n=1.考点:多边形的内角和定理.5、B【解析】

根据二次根式的性质:被开方数大于等于0可以确定x的取值范围.【详解】函数中,解得,故选:B.【点睛】此题考查函数自变量的取值范围,正确列式是解题的关键.6、B【解析】

根据折叠前后对应角相等即可得出答案.【详解】解:设∠ABE=x,

根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,

所以50°+x+x=90°,

解得x=20°.故选B.【点睛】本题考核知识点:轴对称.解题关键点:理解折叠的意义.7、B【解析】

根据方程的根的定义,把x=a代入方程求出a2-3a的值,然后整体代入代数式进行计算即可得解.【详解】解:∵a是方程x2-3x-1=0的一个根,∴a2-3a-1=0,整理得,a2-3a=1,∴2a2-6a+3=2(a2-3a)+3=2×1+3=5,故选:B.【点睛】本题考查了一元二次方程的解,利用整体思想求出a2-3a的值,然后整体代入是解题的关键.8、A【解析】

根据等腰三角形的性质可得另一底角的度数,再根据三角形内角和定理即可求得顶角的度数.【详解】解:∵等腰三角形的底角是70°,∴其顶角=180°-70°-70°=40°,故选:A.【点睛】此题主要考查等腰三角形的性质及三角形内角和定理,熟练掌握等腰三角形的性质是解题的关键.9、A【解析】

根据矩形的性质得到,,于是得到结论.【详解】解:四边形是矩形,,,,.矩形的顶点,,的坐标分别为,,,,,顶点的坐标是,故选:.【点睛】本题考查了矩形的性质,坐标与图形性质,熟练正确矩形的性质是解题的关键.10、B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B二、填空题(每小题3分,共24分)11、【解析】

首先利长方形周长公式表示出长方形的另一边长,然后利用长方形的面积公式求解.【详解】解:∵长方形的周长为24cm,其中一边长为xcm,

∴另一边长为:(12-x)cm,

则y与x的关系式为.

故答案为:.【点睛】本题考查函数关系式,理解长方形的边长、周长以及面积之间的关系是关键.12、﹣1【解析】

直接将要求值的代数式提取公因式ab,进而把已知数据代入求出答案.【详解】∵ab=-1,a+b=1,∴a1b+ab1=ab(a+b)=-1×1=-1.故答案为-1.【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.13、1【解析】

设方程另一根为t,根据根与系数的关系得到2+t=6,然后解一次方程即可.【详解】设方程另一根为t,

根据题意得2+t=6,

解得t=1.

故答案为1.【点睛】此题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握方程的两根为x1,x2,则x1+x2=-.14、1【解析】

先计算出“统计与概率”内容所占的百分比,再乘以10即可.【详解】解:依题意,得(1-45%-5%-40%)×10=10%×10=1.故答案为1.【点睛】本题考查扇形统计图及相关计算.扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.15、0.1【解析】

根据题目中的数据和方差的定义,可以求得所求数据的方差.【详解】设一组数据1,3,5,a,8的平均数是,另一组数据11,13,15,+10,18的平均数是+10,∵=0.1,∴==0.1,故答案为0.1.【点睛】本题考查方差,解答本题的关键是明确题意,利用方差的知识解答.16、30cm1【解析】

根据直角三角形的斜边上中线性质求出斜边长,然后根据三角形的面积解答即可.【详解】解:∵直角三角形斜边上的中线是6cm,∴斜边长为11cm,∴面积为:cm1,故答案为:30cm1.【点睛】本题考查了直角三角形斜边上中线性质的应用,解此题的关键是根据性质求出斜边的长,注意:直角三角形斜边上的中线等于斜边的一半.17、3【解析】

先根据众数的定义求出的值,再根据平均数的计算公式列式计算即可.【详解】解:,2,,4,5的众数是4,,这组数据的平均数是;故答案为:3;【点睛】此题考查了众数和平均数,根据众数的定义求出的值是本题的关键,众数是一组数据中出现次数最多的数.18、【解析】

根据函数图象与轴的交点坐标,观察图象在x轴上方的部分即可得.【详解】当y≥0时,观察图象就是直线y=kx+b在x轴上方的部分对应的x的范围(包含与x轴的交点),∴x≤2,故答案为:x≤2.【点睛】本题考查了一次函数与一元一次不等式的关系,合理运用数形结合思想是解题的关键.三、解答题(共66分)19、作图见详解,位似比为1:1【解析】

连接BB′、CC′,它们的交点P为位似中心,根据位似的性质相似比等于位似比,所以计算AB与A′B′的值即可得到△ABC与△A′B′C′的位似比.【详解】解:如图,点P为位似中心.∵AB=1,A′B′=1,∴△ABC与△A′B′C′的位似比=AB:A′B′=1:1.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行或共线.20、(1);(2)的值为.【解析】

(1)设直线AB所对应的函数表达式为.把点和点.代入,用待定系数法求解即可;(2)把代入(1)中求得的解析式即可求出m的值.【详解】(1)直线经过点和点,解得直线所对应的函数表达式为.(2)当时,.的值为.【点睛】本题考查了待定系数法求函数解析式及一次函数图像上点的坐标特征,熟练掌握待定系数法是解答本题的关键.21、(1)(2)2【解析】

(1)根据平方差公式因式分解即可.(2)首先将其化简,在代入计算即可.【详解】(1)(2)代入x=2,原式=【点睛】本题主要考查因式分解,这是基本知识,应当熟练掌握.22、(1)180元;(2)方案为A型手表25只,B型手表75只,获利最多,最大利润是7250元.【解析】

(1)设今年A型智能手表每只售价x元,则去年售价每只为(x+60)元,由卖出的数量相同建立方程求出其解即可;

(2)设今年新进A型a只,则B型(100-a)只,获利y元,由条件表示出W与a之间的关系式,由a的取值范围就可以求出W的最大值.【详解】解:(1)今年A型智能手表每只售价x元,去年售价每只为(x+60)元,根据题意得,解得:x=180,经检验,x=180是原方程的根,答:今年A型智能手表每只售价180元;(2)设新进A型手表a只,全部售完利润是W元,则新进B型手表(100-a)只,根据题意得,W=(180-130)a+(230-150)(100-a)=-30a+8000,∵100-a≤3a,∴a≥25,∵-30<0,W随a的增大而减小,∴当a=25时,W增大=-30×25+8000=7250元,此时,进货方案为新进A型手表25只,新进B型手表75只,答:方案为A型手表25只,B型手表75只,获利最多,最大利润是7250元.【点睛】此题考查分式方程的应用,一次函数的运用,解题关键在于由销售问题的数量关系求出一次函数的解析式是关键.23、休息区只能摆放张这样的休闲椅.【解析】

先根据正方形的空地面积求出正方形空地的边长,根据儿童游乐场的面积求出儿童游乐场的边长,即可得出休息区东西向和南北向的边长,已知休闲椅的长和宽,利用无理数估算大小的方法,即可知休息区只能摆放几张这样的休闲椅.【详解】如图3:由题得,正方形空地的边长为(米)儿童游乐场的边长为(米)∵(米)∴休息区东西向和南北向的边长分别为米,米∵∴∴休闲椅只能东西方向摆放,且只能摆放一排∵∴∴休闲椅在东西方向上可并列摆放张综上所述,休息区只能摆放张这样的休闲椅【点睛】本题考查了正方形的性质,已知面积可求得边长,题中应用了无理数大小的估算,要想准确的估算出无理数的取值范围需要记住一些常用数的平方,一般情况下从1到20整数的平方都应牢记.24、(1)y=60-x;(2)w=5x+420;(3)该商场购进两种饮料分别为40箱和20箱时,能获得最大利润620元.【解析】

(1)根据购进果汁饮料和碳酸饮料共60箱即可求解;

(2)根据总利润=每个的利润数量就可以表示出w与x之间的关系式;

(3)由题意得40x+25(60-x)≤2100,解得x的值,然后可求y值,根据一次函数的性质可以求出进货方案及最大利润.【详解】(1)y与x的函数解析式为y=60-x.(2)总利润w关于x的函数解析式为w=(52-40)x+(32-25)(60-x)=5x+420.(3)由题意得40x+25(60-x)≤2100,解得x≤40,∵y=5x+420,y随x的增大而增大,∴当x=40时,y最大值=5×40+420=620(元),此时购进碳酸饮料60-40=20(箱).∴该商场购进两种饮料分别为40箱和20箱时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论